
“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XV – 2012 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania

 193

THE DETERMINATION OF THE OPTIMAL PATHS WITH MINIMUM MULTIPLICATION IN UNDIRECTED
GRAPH THAT HAVE THE VALUE OF THE EDGES OBTAINED FROM THE DIJKSTRA ALGORITHM

Paul VASILIU
1

1 Lecturer Ph.D., Naval Academy “Mircea cel Bătrân”, Constanţa

Abstract: By defining the optimal path with minimum value in a finite undirected graph, with positive value for edgess, we usually
understand the determination of the path for which the amount of the edges values that compose the path is minimum. This problem is
solved by classics algorithms, but the most efficient from all is Dijkstra algorithm.

In this paper we will define the concept of optimal path of minimum value as a result of the multiplication of the edges values
that compose that path in a finite undirected graph, we will prove how these paths can be obtained, we will introduce an adaptation of
the Dijkstra algorithm and finally, an implementation in C language.
Keywords: undirected graph, Dijkstra algorithm, multiplication

1. INTRODUCTION

Let the finite undirected graph ,G X , 1 2, , nX x x x and U the set composed of the edges of the graph.

Each edge ,i ju x x U has associated a number , 1i jl u l x x named the value of the edge u .

Definition 1 We assign to the value of the path
1
, ,

ki ix x the number
1

1

1

,
j j

k

i i

j

l l x x .

Observation 1 The value of the path is equal to the multiplication of the values of the edges that compose this path.

Definition 2 We name optimal path of minimum value between ix and jx vertices the path
1 2

* , , , , ,
ki p p p jx x x x x that

has the following property: for each other path
1 2

, , , , ,
li r r r jx x x x x between

ix and jx vertices we have the inequality

*l l .

Let the finite undirected graph , , , ,G X l X U l of n order, with valued edges, 1 2, , , nX x x x and

the matrix composed of the values of the edges 1,2, ,
1,2, ,

i nij
j n

A a 


 where

, ,

,

i j i j

ij

i j

l x x if x x U
a

if x x U
 .

In order to define the path with the minimum multiplication of the values of the edges that compose it, we may choose any
algorithm that determines the path having as minimum value the sum between the edges values of the path applied to the logarithms

matrix of the value of the edges 1,2, ,
1,2, ,

i nij
j n

A a 


 where

ln , ,

,

i j i j

ij

i j

l x x if x x U
a

if x x U
 and taking into account the following equalities ln ln lnab a b and

ln aa e with , 0a b .

2. THE USABILITY OF THE DIJKSTRA ALGORITHM

We will introduce Dijkstra algorithm in order to determine the optimal paths with minimum value for the sum between the

values of the edges that set those paths applied to A matrix. The algorithm was discovered by the computer scientist Edsger Dijkstra
in 1956 and published in 1959.

Let the finite undirected graph , ,G X U l , 1 2, , , nX x x x with edges valued with positive numbers. The

Dijkstra algorithm determines the optimal path with minimum value between any
ix and jx vertices of the graph.

The algorithm uses vertex sx X arbitrarily chosen, defined as the root of the graph (called the root of the graph). Vertex

sx X it is also called the start vertex or the source vertex, and it can be any vertex ix X of the graph. We define s as the start

vertex. The algorithm gets the minimum values of the paths between s vertex and
ix vertices with ix s . Let d x the minimum

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XV – 2012 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania

 194

value of the paths between s vertex and x vertex with x s . Let S the set of selected vertices for which it is computed d x .

In this case, d x is the minimum value of the paths between s vertex and x vertex, paths with the property that all their vertices

are in the S set except x . Let x the set of the incident edges in x vertex. In order to determine the optimal paths that have

minimum value array
1,2,...,

i s

i n
p p i is used, also called the array of the predecessors. The array of the predecessors has n

elements with 0p s . The p i element of the p array is the predecessor vertex of the i vertex of the optimal path with

minimum value.
Dijkstra algorithm consists of the following steps:
Step 1 (initialization)

S s

0d s

For each 1,2, ,i n set [] 0p i

For any x s , p x s

For any x X S

if x s then sxd x a

else d x

Step 2 (current iteration)
repeat

determine vertex y X S where min
z X S

d y d z

if there are more z vertices for which it is achived the minimum min
z X S

d z it will be arbitrary selected one of these vertices

if d y then S S y

 determine y and y S

if y S then

for z y S compute min , yzd z d z d y a

 if min , yz yzd z d y a d y a

then p z y

 else stop

until S X or y S or d y

Step 3

Determining the optimal paths with minimum value between s vertex and all other vertices of the graph.

stop

In every iteration d z values remain unchanged for z S . There are 1n iterations at the second step.

3. THE DETERMINATION OF THE OPTIMAL PATHS

In order to determine the optimal paths from
sx to ix for any 1,2, ,i n

with i s it is used the following idea : if
kx is the predecessor of the mx vertex on an optimal path (where mx is the successor of

kx) , then we have the equality p m k .

There are two methods for the determination of an optimal path. The first one, belonging to the predecessors, in which the

predecessors of the current vertex are systematically determined, beginnig with ix vertex and ending with
sx vertex. The second

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XV – 2012 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania

 195

method, the successors one, the successors of the current vertex are determined in a systematic manner starting with
sx vertex and

finishing with
ix vertex.

As it follows, we will present both predecessors and successors methods that determine the optimal path with minimum value

between s vertex and all the other vertices of the graph.

3.1. The predecessors method

Let
1 2 2 1

, , , , , , ,
p p ps i i i i i ix x x x x x x an optimal path from

sx to
ix . The pi index is determined from the

pp i i condition. If pi s then the optimal path has been already determined otherwise the index
1pi is extracted from the

1p pp i i condition. If
1pi s then the optimal path has been already established otherwise the index 2pi is obtained from

the
1 2p pp i i condition. If 2pi s then the optimal path has been determied. Finally, the index of s is determined from the

following condition: 1p i s .

3.2. The successors method

Let
1 2 2 1

, , , , , , ,
p p ps i i i i i ix x x x x x x an optimal path from

sx to
ix . The index

1i is obtained from the

1p i s property. If
1i i then the optimal path has already been determined otherwise index

2i is obtained from 2 1p i i

condition. If
2i i then the optimal path has been already achieved otherwise the

3i index is determined from 3 2p i i condition.

If
3i i then the optimal path has already been obtained. Finally, it is determined i index from pp i i condition.

4. IMPLEMENTATION IN THE C PROGRAMMING LANGUAGE.
//Dijkstra algorithm determines the paths and also the minimum multiplying //value obtained from the values in paths in a undirected
graph
//Let G=(X,U) undirected graph, without loops
// Vertices are numbered 1,2,...,n and printed x1,x2,...,xn
//The programme receives at input a text file that has m+1 lines on the first line //we find n, the number of vertices and m, the number of
edges in the graph G //separated by one space
// On the following m lines we find on each line the edge and its value, that belong //to the graph, separated by one space
// The programme determines the paths with minimum value between a root
// vertex
// arbitrarily chosen from the {1,2,...,n} set and other vertices in the graph
//The root vertex is received as input from the keyboard

#include "stdio.h"
#include "conio.h"
#include "malloc.h"
#include "limits.h"
#include "math.h"
#define INFINIT INT_MAX/2
#define dim 1000
//The prototypes of the functions defined in the programme
float ** alocmat (int);
int * alocvect_int(int);
float * alocvect_float(int);
int citire_n_m(int &, int &, char *);
int citire(char *,int **);
void afism(int **,int);
void afisv_int(int *,int,char *);
void afisv_float(float *,int,char *);
void afis_arce(int);
void afiss(int);
void drum(int *,int);
void transform(float *, int *, int);
void Dijkstra(float **,int *,int *,int *,int,int);
typedef struct arc
{
int x; int y; int val;
} muchie;
typedef struct multime
{
int nelem;

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XV – 2012 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania

 196

int S[dim];
}set;
muchie mu[dim]; // mu edge array
set start;
// Matrix allocation
// Function for the allocation of a square matrix with dimension n+1 and elements //of float type
// The function returns the address of the matrix or NULL
float ** alocmat (int n)
{
 int i;
float ** p=(float **) malloc ((n+1)*sizeof (float *));
 if (p != NULL)
for (i=0; i<=n ;i++)
p[i] =(float *) malloc ((n+1)*sizeof (float));
return p;
}
// Function for the allocation of a n+1 array with integer elements
// Initialization of components with 0
int * alocvect_int(int n)
{
int *p=(int *)calloc(n+1,sizeof(int));
return p;
}
// Function for the allocation of a n+1 array with real elements
// Initialization of components with 0
float * alocvect_float(int n)
{
float *p=(float *)calloc(n+1,sizeof(float));
return p;
}
// Function for reading an input file
// Read number n of vertices and the number m of edges
int citire_n_m(int &n, int &m, char *nume)
{
FILE *f;
if((f=fopen(nume,"r"))!= NULL)
{
fscanf(f,"%d %d",&n,&m);
fclose(f);
return 1;
}
else
 return 0;
}
// Function that displays edges from graph
void afis_arce(int m)
{
int i;
printf("\n Graful G are %d arce \n\n",m);
for(i=1;i<=m;i++)
printf(" Edge %d:\t (x%d , x%d) with value %d \n",i,mu[i].x,mu[i].y,mu[i].val);
}
// Function for reading the input file and building the matrix values
int citire(char *nume,float **a)
{
int i,j,x,y,n,m;
FILE *f;
if((f=fopen(nume,"r")) != NULL)
{
fscanf(f,"%d %d",&n,&m);
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
if(i==j)
a[i][j]=0;
else
a[i][j]=INFINIT;
for(i=1;i<=m;i++)
{
fscanf(f,"%d %d %d",&mu[i].x,&mu[i].y,&mu[i].val);
a[mu[i].x][mu[i].y]=log(mu[i].val);

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XV – 2012 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania

 197

a[mu[i].y][mu[i].x]=log(mu[i].val);
}
fclose(f);
return 1;
}
else
return 0;
}
// Function to print the optimal path
void drum(int *p,int i)
{
if(p[i]) drum(p,p[i]);
printf(" x%d ",i);
}
// Function to print the n x n matrix
void afism(float **a,int n)
{
int i,j;
printf("\n\n Adjacency matrix \n\n");
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
printf(" %5.2f ",a[i][j]);
printf("\n");
}
}
// Function to print the x array with n integer components
void afisv_int(int *x, int n, char *s)
{
int i;
printf(" %s : (",s);
for(i=1;i<n;i++)
printf(" %d , ",x[i]);
printf(" %d) \n",x[i]);
}
// Function to print the x array with n float components
void afisv_float(float *x, int n, char *s)
{
int i;
printf(" %s : (",s);
for(i=1;i<n;i++)
printf(" %5.2f , ",x[i]);
printf(" %5.2f) \n",x[i]);
}
// Function to display the selected vertices
void afiss(int n)
{
int i;
printf(" Set S with selected vertices has %d elements \n",start.nelem);
for(i=1;i<=n;i++)
if(start.S[i]!=0)
printf(" x%d ",i);
printf("\n");
}
// Function for transforming the optimal values log-exp
void transform(float *d, int *dprim, int n)
{
int i;
for(i=1;i<=n;i++)
dprim[i]=(int)(round(exp(d[i])));
}
// Function that implements Dijkstra algorithm
void Dijkstra(float **a,int *s,float *d,int *dprim, int *p,int n,int r)
{
int i,j,poz;
float min;
afisv_int(p,n," Predecessors array ");
getch();
for(i=1;i<=n;i++)
start.S[i]=0;

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XV – 2012 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania

 198

start.S[r]=1;
start.nelem=1;
afiss(n);
getch();
for(i=1;i<=n;i++)
{
d[i]=a[r][i];
if(i!=r)
if(d[i]<INFINIT)
p[i]=r;
}
afisv_float(d,n," Array of values ");
getch();
for(i=1;i<=n-1;i++)
{
min=(float)INFINIT;
for(j=1;j<=n;j++)
if(start.S[j]==0)
if(d[j]<min)
{
min=d[j];
poz=j;
}
afisv_int(p,n," Predecessors array ");
getch();
printf("Minimum value %5.2f \n",min);
start.S[poz]=1;
start.nelem++;
afiss(n);
getch();
for(j=1;j<=n;j++)
if(s[j]==0)
if(d[j]>d[poz]+a[poz][j])
{
d[j]=d[poz]+a[poz][j];
p[j]=poz;
}
afisv_float(d,n," Array of values ");
getch();
}
afisv_float(d,n," Array of optimal values ");
transform(d,dprim,n);
afisv_int(dprim,n," Array of optimal values of the values multiplication ");
getch();
for(i=1;i<=n;i++)
if(i!=r)
if(p[i])
{
printf("\n The minimum value of the multiplication path values between x%d vertex and x%d vertex is %d \n",r,i,dprim[i]);
printf(" The path with minimum multiplication between x%d vertex and x%d vertex is {",r,i);
drum(p,i);
printf("}\n");
}
else printf(" There are no paths between x%d vertex and x%d vertex \n",r,i);
}
// n is the number of vertices of the graph
// m is the current number of egdes of the graph
// a is the adjacency matrix
// d the array of minimal optimal values of the paths
// s the array of selected vertices
// p the predecessors array
// nume the name of the file associated with the graph
// r is the root vertex, arbitrarily from the set {1,2,...,n}
int main()
{
int *s,*p,n,m,i,j,r,*dprim;
float **a,*d;
char nume[30];
printf(" Dijkstra algorithm for directed graphs \n");
printf("\n File name");

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XV – 2012 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania

 199

gets(nume);
if(citire_n_m(n,m,nume))
{
printf("Number of vertices %d \n",n);
printf("Number of edges %d \n",m);
getch();
printf(" Start vertex ");
scanf("%d",&r);
if(1<=r && r<=n)
{
a=alocmat(n);
s=alocvect_int(n);
d=alocvect_float(n);
dprim=alocvect_int(n);
p=alocvect_int(n);
if(citire(nume,a))
{
afism(a,n);
getch();
afis_arce(m);
getch();
Dijkstra(a,s,d,dprim,p,n,r);
}
free(a);
free(s);
free(d);
free(dprim);
free(p);
}
else
printf(" Vertex %d does not exist \n",r);
}
else
printf(" Error reading file %s \n",nume);
getch();
}

5. REFERENCES
 [1] Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford. Dijkstra's algorithm. Introduction to Algorithms
(Second ed.). MIT Press and McGraw-Hill. pp. 595–601, 2001. ISBN 0-262-03293-7.
[2] Dijkstra, E. W. A note on two problems in connexion with graphs. Numerische Mathematik 1: 269–271, 1959. http://www-
m3.ma.tum.de/twiki/pub/MN0506/WebHome/dijkstra.pdf.

http://en.wikipedia.org/wiki/Thomas_H._Cormen
http://en.wikipedia.org/wiki/Charles_E._Leiserson
http://en.wikipedia.org/wiki/Ronald_L._Rivest
http://en.wikipedia.org/wiki/Clifford_Stein
http://en.wikipedia.org/wiki/Introduction_to_Algorithms
http://en.wikipedia.org/wiki/MIT_Press
http://en.wikipedia.org/wiki/McGraw-Hill
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-262-03293-7
http://en.wikipedia.org/wiki/Edsger_W._Dijkstra
http://www-m3.ma.tum.de/twiki/pub/MN0506/WebHome/dijkstra.pdf
http://www-m3.ma.tum.de/twiki/pub/MN0506/WebHome/dijkstra.pdf
http://www-m3.ma.tum.de/twiki/pub/MN0506/WebHome/dijkstra.pdf

