
“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XV – 2012 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania

A NEW APPROACH TO SECURING THE SETUP AND FLOODING STAGES OF ROUTING
ALGORITHMS

Ioan POPOVICIU1

1 Assoc. Prof., PhD, “Mircea cel Batran” Naval Academy

Abstract: In this paper we describe a method to securing the steps of routing algorithms, using a public-key infrastructure and
cryptographic hashing of messages to achieve security. This method can secure several routing algorithms for networks where
a single bad router can affect an entire network.
Key words: network, router, protocol,algorithm, security

1. INTRODUCTION

Routing messages in a network is an essential
component of Internet communication, as each packet in
the Internet must be passed quickly through each network
(or autonomous system) that it must traverse to go from its
source to its destination. It should come as no surprise,
then, that most methods currently deployed in the Internet
for routing in a network are designed to forward packets
along shortest paths. Indeed, current interior routing
protocols, such as OSPF, RIP, and IEGP, are based on
this premise, as are many exterior routing protocols, such
as BGP and EGP.

The algorithms that form the basis of these
protocols are not secure, however, and have even been
compromised by routers that did not follow the respective
protocols correctly. Fortunately, all network malfunctions
resulting from faulty routers have to date been shown to be
the result of meson figured routers, not malicious attacks.
Nevertheless, these failures show the feasibility of
malicious router attacks, for they demonstrate that
compromising a single router can undermine the
performance of an entire network.

In this paper we describe a new approach to
securing the setup and flooding stages of routing
algorithms. After a preliminary setup that involves
distributing a set of secret keys equal that total no more
than the number of routers, our method uses simple
cryptographic hashing of messages (HMACs) to achieve
security.
2. FLOODING

We begin by discussing the flooding protocol
and a low-cost way of making it more secure. Our method
involves the use message-authenticating scheme using
cryptographic hashing.
2.1 The Network Framework and the Flooding
Algorithm

Let G = (V;E) be a network whose vertices in V
are routers and whose edges in E are direct connections
between routers. We assume that the routers have some
convenient addressing mechanism that allows us without
loss of generality to assume that the routers are numbered
1 to n. Furthermore, we assume that G is disconnected,
that is, that it would take at least two routers to fail in order
to disconnect the network.

The flooding algorithm is initiated by some router
s creating a message M that it wishes to send to every
other router in G. The typical way the flooding algorithm is
implemented is that s incrementally assigns sequence
numbers to the messages it sends. So that if the previous
message that s sent had sequence number j, then the
message M is sent with sequence number j + 1 and an
identification of the message source, that is, as the
message (s; j +1;M). Likewise, every router x in G
maintains a table Sx that stores the largest sequence
number encountered so far from each possible source
router in G. Thus, any time a router x receives a message
(s; j + 1; M) from an adjacent router y, the router x first
checks if Sx [s] < j +1. If so, then x assigns Sx[s] = j +1 and
x sends the message (s; j +1; M) to all of its adjacent
routers, except for y. If the test fails, however, then x

assumes it has handled this message before and it
discards the message.

If all routers perform their respective tasks
correctly, then the flooding algorithm will send the
message M to all the nodes in G. Indeed, if the
communication steps are synchronized and done in
parallel, then the message M propagates out from s is a
breadth-first fashion.

If the security of one or more routers is
compromised, however, then the flooding algorithm can be
successfully attacked. For example, a router t could spoof
the router s and send its own message (s; j + 1;M’’). If this
router reaches a router x before the correct message, then
x will propagate this imposter message and throw away
the correct one when it finally arrives. Likewise, a
corrupted router can modify the message itself, the source
identification, and/or the sequence number of the full
message in transit. Each such modification has its own
obvious bad effects on the network.
2.2 Securing the Flooding Algorithm on General
Networks

On possible way of avoiding the possible failures
that compromised or meson figured routers can inflict on
the flooding algorithm is to take advantage of a public-key
infrastructure defined for the routers. In this case, we
would have s digitally sign every flooding message it
transmits, and have every router authenticate a message
before sending it on. Unfortunately, this approach is
computationally expensive.

Our scheme is based on next strategy. The
initial setup for our scheme involves the use of a public-key
infrastructure, but the day-to-day operation of our strategy
takes advantage of much faster cryptographic
methodologies. Specifically, we define for each router x the
set N(x), which contains the vertices (routers) in G that are
neighbours of x (which does not include the vertex x itself).

That is, { }xyandEyxyxN ≠∈=),(:)(. The
security of our scheme is derived from a secret key k(x)
that is shared by all the vertices in N(x), but not by x itself.
This key is created in a setup phase and distributed
securely using the public-key infrastructure to all the
members of N(x). Note, in addition, that)(xNy ∈ if

and only if)(yNy ∈ .
Now, when s wishes to send the message M as

a flooding message to a neigh boring router, x, it

sends ()()0,)(||1|,,1, xkMjshMjs ++ ,
where h is a cryptographic hash function that is collision
resistant. Any router x adjacent to s in G can immediately
verify the authenticity of this message (except for the value
of this application of h), for this message is coming to x
along the direct connection from s. But nodes at distances
greater than 1 from s cannot authenticate this message so
easily when it is coming from a router other than s.
Fortunately, the propagation protocol will allow for all of
these routers to authenticate the message from s, under
the assumption that at most one router is compromised
during the computation.

183

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XV – 2012 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania

Let (s; j +1; M; h1; h2) be the message that is

received by a router x on its link from a router y. If y = s,
then x is directly connected to s, and h2 = 0. But in this
case x can directly authenticate the message, since it
came directly from s. In general, for a router x that just
received this message from a neighbour y with sy ≠ , we
inductively assume that h2 is the hash value
())(||1| ykMjsh + . Since x is in N(y), it shares the key

k(y) with y’s other neighbors; hence, x can authenticate the
message from y by using h2. This authentication is
sufficient to guarantee correctness, assuming no more
than one router is corrupted at present, even though x has
no way of verifying the value of h1.

So to continue the propagation assuming that
flooding should continue from x, the router x sends out to
each w that is its neighbor the message

()()1,)(||1|,,1, hwkMjshMjs ++ . Note that this
message is in the correct format for each such w, for h1
should be the hash value ())(||1| xkMjsh + , which w can
immediately verify, since it knows k(x). Note further that,
just as in the insecure version of the flooding algorithm, the
first time a router w receives this message, it can process
it, updating the sequence number for s and so on.
2.3 Trading Message Size for Hashing Computations

In some contexts it might be too expensive for a
router to perform as many hash computations as it has
neighbors. Thus, we might wonder whether it is possible to
reduce the number of hashes that an intermediate router
needs to do to one. In this subsection we describe how to
achieve such a result, albeit at the expense of increasing
the size of the message that is sent to propagate the
flooding message.

In this case, we change the preprocessing step
to that of computing a small-sized coloring of the vertices
in G so that no two nodes are assigned the same color.
Algorithms for computing or approximating such colorings
are known for a wide variety of graphs. For example, a tree
can be colored with two colors. Such colorings might prove
useful in applying our scheme to multicasting algorithms,
since most multicasting communications actually take
place in a tree. A planar graph can be colored with four
colors, albeit with some difficulty, and coloring a planar
graph with five colors is easy. Finally, it is easy to color a
graph that has maximum degree d using at most d+1
colors by a straightforward greedy algorithm. This last
class of graphs is perhaps the most important for general
networking applications, as most communications
networks bound their degree by a constant.

Let the set of colors used to color G be simply
numbered from 1 to c and let us denote with Vi the set of
vertices in G that are given color i, for i = 1; 2; : : : ; c,
with 2≥c . As a preprocessing step, we create a secret
key ki for the color i. We do not share this color with the
members of Vi, however. Instead, we share ki with all the
vertices that are not assigned color i.

When a router s wishes to flood a message M
with a new sequence number j + 1, in this new secure
scheme, it creates a full message as (s; j + 1;M; h1; h2; : :
: ; hc), where each ()ii kMjshh ||1| += . (As a side note,

we observe that the prefix of the bit string being hashed
repeatedly by s is the same for all hashes, and its hash
value in an iterative hashing function need only be
computed once.) There is one problem for s to build this
message, however. It does not know the value of ki, where
i is the color for s. So, it will set that hash value to 0. Then,
s sends this message to each of its neighbors.

Suppose now that a router x receives a
message (s; j + 1;M; h1; h2; : : : ; hc) from its neighbor

sy ≠ . In this case x can verify the authenticity of the
message immediately, since it is coming along the direct
link from s. Thus, in this case, x does not need to perform
any hash computations to validate the message. Still, there
is one hash entry that is missing in this message (and is
currently set to zero): namely, hi = 0, where i is the color of
s. In this case, the router x computes

()jij kMjshh ||1| += , since it must necessarily share

the value of kj , by the definition of a vertex coloring. The
router x then sends out the (revised) message (s; j + 1;M;
h1; h2; : : : ; hc).

Suppose then that a router x receives a
message (s; j + 1;M; h1; h2; : : : ; hc) from its
neighbor sy ≠ . In this case we can inductively assume
that each of the hi values is defined. Moreover, x can
verify this message by testing if ()ii kMjshh ||1| += ,

where i is the color for y. If this test succeeds, then x
accepts the message as valid and sends it on to all of its
neighbors except y. In this case, the message is
authenticated, since y could not manufacture the value of
hi.

If the graph G is biconnected, then even if one
router fails to send a message to its neighbors, the flood
will still be completed. Even without biconnectivity, if a
router modifies the contents of M, the identity of s, or the
value of j+1, this alteration will be discovered in one hop.
Nevertheless, we cannot immediately implicate a router x if
its neighbor y discovers an invalid hi value, where i is the
color of x. The reason is that another router, w, earlier in
the flooding could have simply modified this hi value,
without changing s, j + 1, or M. Such a modification will of
course be discovered by y, but y cannot know which
previous router performed such a modification. Thus, we
can detect modifications to content in one hop, but we
cannot necessarily detect modifications to hi values in one
hop. Even so, if there is at most one corrupted router in G,
then we will discover a message modification if it occurs.
3. SETUP FOR DISTANCE-VECTOR ROUTING

Another important routing setup algorithm is the
distance-vector algorithm, which is the basis of the well-
known RIP protocol. As with the link-state algorithm, the
setup for distance-vector algorithm creates for each router
x in G a vector, Dx, of distances from x to all other routers,
and a vector Cx, which indicates which link to follow from x
to traverse a shortest path to a given router. Rather than
compute these tables all at once, however, the distance
vector algorithm produces them in a series of rounds.

3.1 Reviewing the Distance-Vector Algorithm

Initially, each router sets Dx[y] equal to the weight, w(x; y), of the link from x to y, if there is such a link. If there is no
such link, then x sets [] +∞=yDx

. In each round each router x sends its distance vector to each of its neighbors. Then each
router x updates its tables by performing the following computation:
for each router y adjacent to x do

for each other router w do
if Dx[w] > w(x; y) + Dy[w] then
{It is faster to first go to y on the way to w}
 Set Dx[w] = w(x; y) + Dy[w]
Set Cx[w] = y
endif

endfor
endfor

184

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XV – 2012 – Issue 1
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania

If we examine closely the computation that is

performed at a router x, it can be modeled as that of
computing the minimum of a collection of values that are
sent to x from adjacent routers (that is, the w(x; y)+Dy[w]
values), plus some comparisons, arithmetic, and
assignments. Thus, to secure the distance-vector
algorithm, the essential computation is that of verifying that
the router x has correctly computed this minimum value.
3.2 Securing the Setup for the Distance-Vector
Algorithm

Since the main algorithmic portion in testing the
correctness of a round of the distance-vector algorithm
involves validating the computation of a minimum of a
collection of values, let us focus 7 more specifically on this
problem. Suppose, then, that we have a node x that is
adjacent to a collection of nodes y0, y1, : : :, yd-1, and each
node yi sends to x a value ai. The task x is to perform is
to compute { }ia

di
m

1,...,1,0
min

−=
=

in a way that all the yi 's are assured that the computation
was done correctly. As in the previous sections, we will
assume that at most one router will be corrupted during the
computation (but we have to prevent and/or detect any
fallout from this corruption). In this case, the router that we
consider as possibly corrupted is x itself. The neighbors of
x must be able therefore to verify every computation that x
is to perform. To aid in this verification, we assume a
preprocessing step has shared a key k(x) with all d of the
neighbors of x, that is, the members of N(x), but is not
known by x.

The algorithm that x will use to compute m is the
trivial minimum-finding algorithm, where x iteratively
computes all the pre_x minimum values

 { }ia
jijm

,...,1,0
min

=
=

for j = 0; : : : ; d−1. Thus, the output from this algorithm is
simply m = md-1. The secure version of this algorithm
proceeds in four communication rounds:
1. Each router yi sends its value ai to x, as

()())(|, xkahaA iii = , for i = 0; 1; : : : ; d − 1.
2. The router x computes the mi values and sends the
message

+−− diAdiAimim mod1,mod1,,1
 to each yi.

The validity of didi AandA mod1mod1 +− is checked by

each such yi using the secret key k(x). Likewise, each yi
checks that { }iaimim ,1min −= .

3. If the check succeeds, each router yi sends its
verification of this computation to x
as ()())(|||"",,,"" xkiimyeshimiyesiB = . (For added

security yi can seed this otherwise short message with a
random number.)
4. The router x sends the message ()didi BB mod1mod1 , +−

to each yi. Each such yi checks the validity of these
messages and that they all indicated “yes” as their answer
to the check on x's computation. This completes the
computation.

In essence, the above algorithm is checking
each step of x's iterative computation of the mi 's. But
rather than do this checking sequentially, which would take
O(d) rounds, we do this check in parallel, in O(1) rounds.

REFERENCES
[1] K. A. Bradley, S. Cheung, N. Puketza, B. Mukherjee, and R. A. Olsson. Detecting disruptive routers: A distributed network
monitoring approach. In IEEE Symposium on Security and Privacy, pages 115{124, 1998
[2] S. Cheung. An e_cient message authentication scheme for link state routing. In 13th Annual Computer Security Applications
Conference, pages 90{98, 1997
[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, Cambridge, MA, 1990
[4] R. Hauser, T. Przygienda, and G. Tsudik. Reducing the cost of security in link-state routing. Computer Networks and ISDN
Systems, 1999
[5] C. Kaufman, R. Perlman, and M. Speciner. Network Security: Private Communication in a Public World. Prentice-Hall,
Englewood Cli_s, NJ, 1995
[6] S. Murphy, M. Badger, and B. Wellington. RFC 2154: OSPF with digital signatures, June 1997. Status: EXPERIMENTAL.

53

