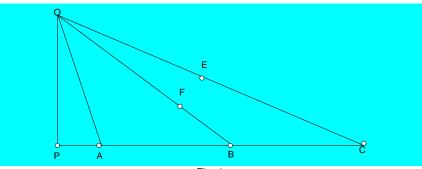
"Mircea cel Batran" Naval Academy Scientific Bulletin, Volume XIV – 2011 – Issue 2 Published by "Mircea cel Batran" Naval Academy Press, Constanta, Romania


THE MATHEMATICAL MODEL TO DETERMINE THE UNDERWATER EXPLOSIONS DIRECTION AND DISTANCE

Nicolae BADARA¹

Ovidiu CRISTEA²

Colonel(R) Lecturer Engineer PhD Nicolae BADARA, "Mircea cel Batran" Naval Academy Constanta ²Lieutenant Junior Assistant Engineer Ovidiu CRISTEA, Mircea cel Batran" Naval Academy "Constanta

Abstract: This report presents the triangulation of the underwater explosion source. The analysis is based on the time-delay measurement the underwater acoustic wave, deriving the range and the direction to the underwater source of explosion. The mathematical model is simulated for different values of the time-delay at three sensors. It was built a practical demonstrator, which gave the possibility to verify in real environment the mathematical model.

The hydro-acoustic sensors are placed in the A, B, C points, at d_o range; the event take place in O point. We trace a perpendicular in P point.

OA=OF=OE and represents the range covered by the wave from t_{0} , moment when the event took place and t_{1} , moment when the signal was received from A point. The wave will cover the range FB in the time T_B , which is $T_B=t_2-t_1$, where t_2 is the time when the wave came in the B point, so FB=T_B*v, where v is the speed of wave in the water, speed known either from the hydro-acoustic prognosis or approximated at 1450m/s.

The wave will cover the range EC in the time T_{c} , which is $T_c=t_3-t_1$, where t_3 is the time when the wave came in the point C, so EC=T_C*v.

We can write the following relations:

 $(OP)^{2}=(OA)^{2}-(PA)^{2}$ $(OP)^{2}=(OF+FB)^{2}-(AB+PA)^{2}$ $(OP)^{2}=(OE+EC)^{2}-(AB+BC+PA)^{2}$

he unknown of the system are: OP, OA, PA. Knowing the sides, in OPA triangle, sin A=OP/OA. So the range and the direction are determinates. We observe that if the event is in the left of the hydro-acoustic sensors line, the wave came firstly in point C. In this case:

(OP)²=(OC)²-(PC)² (OP)²=(OF+FB)²-(CB+PC)² (OP)²=(OE+EC)²-(CB+BC+PC)² The unknown of the system are: OP, OC, PC. Knowing the sides, in OPC triangle, sin C=OP/OC.

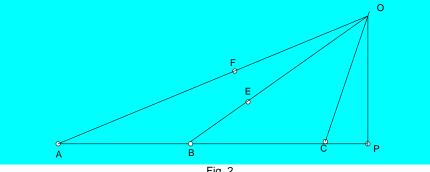


Fig. 2

The resolution of the system is simple: $\begin{array}{c} (OP)^2 = (OA)^2 - (PA)^2 \\ (OP)^2 = (OF + FB)^2 - (AB + PA)^2 \\ (OP)^2 = (OE + EC)^2 - (AB + BC + PA)^2 \end{array}$ We decompose, OP²=OA²-PA² OP²=OF²+2*OF*FB+FB²-AB²-2*AB*PA-PA²

Considering AB=BC of known value, we would analyze the minimum value for AB OP²=OE²+2*OE*EC+EC²-4*AB²-4*AB*PA-PA² Replacing in the last two equations: $OA^2 - \underline{PA}^2 = OF^2 + 2*OF*FB + FB^2 - AB^2 - 2*AB*PA - \underline{PA}^2$ $OA^2 - \underline{PA}^2 = OE^2 + 2*OE*EC + EC^2 - 4*AB^2 - 4*AB*PA - \underline{PA}^2$

"Mircea cel Batran" Naval Academy Scientific Bulletin, Volume XIV – 2011 – Issue 2 Published by "Mircea cel Batran" Naval Academy Press, Constanta, Romania

OA² =OF²+2*OF*FB+FB²-AB²-2*AB*PA OA² =OE²+2*OE*EC+EC²-4*AB²-4*AB*PA

But OA=OF=OE, so:

 $OA^2 = OA^2 + 2^*OA^*FB + FB^2 - AB^2 - 2^*AB^*PA$ $OA^2 = OA^2 + 2^*OA^*EC + EC^2 - 4^*AB^2 - 4^*AB^*PA$ The unknown of the system are OP, OA, PA. By simplification the system became:

2*OA*EB+FB²-AB²-2*AB*PA=0 2*OA*EC+EC²-4*AB²-4*AB*PA=0 Result PA:

$$PA = \frac{FB^2 + 2 \cdot OA \cdot FB - AB^2}{2 \cdot AB}$$

$$OA = \frac{2FB^2 + 2AB^2 - EC^2}{2 \cdot EC - 4 \cdot FB}$$

Where AB is the range between the sensors, B=T_B*v, EC=T_C*v, with T_B=t_2-t_1 and T_C=t_3-t_1. t_1 is the time when the signal was received by the sensor from the A point, t_2 is the time when the wave came in the B point, t_3 is the time when the wave came in the C point. The results of the simulation are presented down.

INITIAL DATA TRIANGULATION PROGRAM

No.	Х	v	z	v	d	tO	t1	t2	t1-t0	t2-t0
Event at the left										
1	20	-24	31.241	1400	2	0.0223	0.0234	0.0245	0.0011	0.0022
2	35	-30	46.0977	1400	2	0.0329	0.0338	0.0348	0.0009	0.0019
3	60	-41	72.6705	1400	2	0.0519	0.0527	0.0535	0.0008	0.0016
4	95	-52	108.301	1400	2	0.0773	0.0780	0.0787	0.0006	0.0014
5	450	-132	468.961	1400	2	0.3349	0.3353	0.3357	0.0004	0.0008
6	1200	-450	1281.6	1400	5	0.9154	0.9166	0.9179	0.0012	0.0025
7	2400	-870	2552.82	1400	5	1.8234	1.8246	1.8258	0.0012	0.0024
8	5000	-2400	5546.17	1400	5	3.9615	3.9630	3.9646	0.0015	0.0030
9	12400	-6000	13775.3	1400	10	9.8395	9.8426	9.8457	0.0031	0.0062
10	25000	-12000	27730.8	1400	10	19.807	19.810	19.813	0.0030	0.0061
Event at the right										
No.	Х	у	z	v	d	tO	t1	t2	t1-t0	t2-t0
11	20	24	31.241	1400	2	0.0223	0.0212	0.0202	0.0010	0.0021
12	35	30	46.0977	1400	2	0.0329	0.0320	0.0311	0.0008	0.0017
13	60	41	72.6705	1400	2	0.0519	0.0511	0.0503	0.0007	0.0015
14	95	52	108.301	1400	2	0.0773	0.0766	0.0760	0.0006	0.0013
15	450	132	468.961	1400	2	0.3349	0.3345	0.3341	0.0003	0.0007
16	1200	450	1281.6	1400	5	0.9154	0.9141	0.9129	0.0012	0.0024
17	2400	870	2552.82	1400	5	1.8234	1.8222	1.8210	0.0012	0.0024
18	5000	2400	5546.17	1400	5	3.9615	3.9600	3.9584	0.0015	0.0030
19	12400	6000	13775.3	1400	10	9.8395	9.8364	9.8333	0.0031	0.0062
20	25000	12000	27730.8	1400	10	19.807	19.804	19.801	0.0030	0.0061

REFERENCES

Table 1

[1] Savo G. Glisic, Advanced Wireless Communications, 4G Cognitive and Cooperative Broadband Technology, second edition, University of Oulu, Finland

[2] Jairo Gutierrez, Business Data Communications and Networking, University of Auckland, New Zealand

[3] Richard P. Hodges, Underwater Acoustics. Analysis, Design and Performance of Sonar

[4] John S. Seybold, Introduction to RF Propagation, 1958

[5] Yang Xiao, Underwater Acoustic Sensor Networks, Auerbach Publications 2010

[6] Automatic Identification System, IMO 2002