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Abstract: In this paper we deal with the formalism of describing the desired manipulator motion as sequences of points in space 
(position and orientation of the manipulator) through which the manipulator must pass, as well as the space curve that it traverses. The 
space curve that the manipulator hand moves along from the initial location (position and orientation) to the final location is called the 
path. 
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1. INTRODUCTION 

Before moving a robot arm, it is of considerable 
interest to know whether there are any obstacles present in its' 
path (obstacle constraint) and whether the manipulator hand 
must traverse a specified path (path constraint). We are 
interested in developing suitable formalisms for defining and 
describing the desired motions of the manipulator hand 
between the path endpoints. Trajectory planning schemes 
generally "interpolate" or "approximate" the desired path by a 
class of polynomial functions and generates a sequence of 
time-based "control set points" for the control of the 
manipulator from the initial location to its destination. Path 
endpoints can be specified either in joint coordinates or in 
cartesian coordinates. 

However, they are usually specified in cartesian 
coordinates because it is easier to visualize the correct end-
effector configurations in cartesian coordinates than in joint 
coordinates.  
2. GENERAL CONSIDERATIONS ON TRAJECTORY 
PLANNING 

Trajectory planning can be conducted either in the 
joint variable space or in the Cartesian space. For joint-
variable space planning, the time history of all joint variables 
and their first two time derivatives are planned to describe the 
desired motion manipulator. For Cartesian space planning, the 
time history of the manipulator hand's position, velocity, and 
acceleration are planned and the corresponding joint positions, 
velocities, and accelerations are derived from the hand 

information. Planning in the joint-variable space has three 
advantages- (1) the trajectory is planned directly in terms of 
the controlled variables during motion, (2) the trajectory 
planning can be done in near real time, and (3) the joint 
trajectories are easier to plan.  

In general, the basic algorithm for generating joint 
trajectory set points is quite simple: 

t = t0 
loop: Wait for the next control interval; 

t = t +Δt 
h(t)= where the manipulator joint position should be at time t; 
If t = tf , then exit; 
Go to loop; 
where Δt is the control sampling period for the manipulator. 

From the above algorithm, we see that the 
computation consists of a trajectory function (or trajectory 
planner) h(t) which must be updated in every control interval.  

Thus, one seventh-degree polynomial for each joint 
variable connecting  the initial and final  positions would 
suffice, as would two quartic and one cubic  (4-3-4) trajectory 
segments, two cubics and one quintic (3-5-3) trajectory 
segments,or five cubic (3-3-3-3-3) trajectory segments. The (4-
3-4) trajectory segments will be discussed further in the next 
section. 

To servo a manipulator, it is required that its robot 
arm's configuration at both the initial and final locations must 
be specified before the motion trajectory is planned.  

 
 

One approach is to specify a seventh-degree polynomial for each joint i: 
(1)      ,  
where the unknown coefficients aj can be determined from the known positions and continuity conditions. However, the use of such a 
high-degree polynomial to interpolate the given knot points not to be satisfactory. It is difficult to find its extrema and it tends to have 
extraneous motion. An alternative approach is to split entire joint trajectory into several trajectory segments so that different interpolating 
polynomials of a lower degree can be used to interpolate in each trajectory segment. There are different ways a joint trajectory can be 
split, and each method possesses different properties. The most common methods are the following:  
4-3-4 Trajectory. Each joint has the following three trajectory segments: the first segment is a fourth-degree polynomial specifying the 
trajectory from the initial position to the lift-off position. The second trajectory segment (or midtrajectory segment) is a third-degree 
polynomial specifying the trajectory from the lift-off position to the set-down position. The last trajectory segment is a fourth-degree 
polynomial specifying the trajectory from the set-down position to the final position. 
3-5-3 Trajectory. Same as 4-3-4 trajectory, but uses polynomials of differed degrees for each segment: a third-degree polynomial for the 
first segment a fifth-degree polynomial for the second segment, and a third-degree polynomial for the last segment. 

 5-Cubic Trajectory.  Cubic spline functions of third-degree polynomials for five trajectory segments are used. 
3. CALCULATION OF A 4-3-4 JOINT TRAJECTORY 

Since we are determining N joint trajectories in each trajectory segment, it is convenient to introduce a normalized time variable, 
, which allows us to treat the equations of each trajectory segment for each joint angle in the same way,  with time varying from 

t = 0 (initial time for all trajectory segments) to t = 1 (final time for all trajectory segments).   Let us define the following variables: 
t   :    normalized time variable,   
:    real time in seconds 
:    real time at the end of the i x h trajectory segment 

:    real time required to travel through the ith segment 

 
The trajectory consists of the polynomial sequences,  , which together form the I trajectory for joint j. The polynomial 

equations for each joint variable in each trajectory segment expressed in normalized time are: 
(2)   (1st segment)  
(3)  
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(4)   (2nd segment)   
(5)  (last segment)   

The subscript of each polynomial equation indicates the segment number, and n indicates the last trajectory segment. The 
unknown coefficient aji  indicates the ith coefficient for the j trajectory segment of a joint trajectory. The boundary conditions that this set 
of joint trajectory segment polynomials must satisfy are: 
1. Initial position  =   
2. Magnitude of initial velocity  =  v0 (normally zero) 
3. Magnitude of initial acceleration  = aQ (normally zero) 
4. Lift-off position   =   
.    5. Continuity in position t1 , [that is, ] 
6. Continuity in velocity at t1,  [that is, ] 
7. Continuity in acceleration at t1  [that is, ] 
8. Set-down position =  
  9. Continuity in position at t2 [that is, ] 
10. Continuity in velocity at t2 [that is, ] 
11. Continuity in acceleration at t2 [that is, ] 
12. Final position =  
13. Magnitude of final velocity  =  vf  (normally zero) 
14. Magnitude of final acceleration  = af (normally zero) 

The boundary conditions for the 4-3-4 joint trajectory are shown in Fig 1. The first and second derivatives of these polynomial 
equations with respect to real time  can be written as: 
(6)          
and 
(7)                

For the first trajectory segment, the governing polynomial equation is of the fourth degree: 
(7)  

From equations (5) and (6), its first two derivatives with respect to real time are: 
(8)        
and 
(9)                                                          
1. For  t = 0 (at the initial position of the trajectory segment). Satisfying the boundary conditions at this point leads to: 
(10) a10 = h1(0)=  (given) (11) 

           

which gives 
     

and  
(12)                                                    

which yields 

 
Wit these unknowns determined, equation (12) can be rewritten as: 

(13)                                       
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 55 



“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIV – 2011 – Issue 2 
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania 

 

Real time

Joint i

0τ 1τ 2τ nτ

( )0τθ

( )1τθ

( )2τθ

( )nτθ

( )
( )
( ) 00

00

00

a

v

=

=

=

τθ

τθ

θτθ





( ) ( )
( ) ( )
( ) ( )+−

+−

+−

=

=

=

11

11

11

τθτθ

τθτθ

τθτθ





( )
( )
( ) fn

fn

fn

a

v

=

=

=

τθ

τθ

θτθ





( ) ( )
( ) ( )
( ) ( )+−

+−

+−

=

=

=

22

22

22

τθτθ
τθτθ
τθτθ





 
 

Fig. 1 Boundary conditions for a 4-3-4 joint trajectory 
 

2. For t = 1 (at the final position of this trajectory segment). At this position, we relax the requirement that the interpolating 
polynomial must pass through the position exactly. We only require that the velocity and acceleration at this position have to be 
continuous with the velocity and acceleration, respectively, at the beginning of the next trajectory segment. The velocity and 
acceleration at this position are:  
(14)  

(15)  

For the secondary trajectory segment, the governing polynomial equation is of the third degree: 
(16)                                          

For  t = 0 (at the lift-off position). Using equations (5) and (6), the velocity and acceleration at this position are, respectively: 
(17) 
        
 
which gives 

 
And 
(19)      
                                                      
 
which yields  

Since the velocity and acceleration at this point must be continuous with the velocity and acceleration at the end of the 
previous trajectory segment, respectively, we have  : 
(20)                                                                                    
which, respectively, leads to: 
(21)                      

or  
(22)                                                                         
and  
(23)                                                     

or  
(24)                                                                                  
3. For  t = 1 (at the set down position). Again the velocity and acceleration at this position must be continuous with the velocity 
and acceleration at the beginning of the next trajectory segment. The velocity and acceleration at this position are obtained, 
respectively, as : 
(25)                                                                              

(26)                                                              

and  
(27)                                                                             

For the last trajectory segment, the governing polynomial equation is of the fourth degree: 
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(28)                          

If we substitute  into t in the above equation, we have shifted the normalized time  t from  to  . 
Then equation (28) becomes:  
(29)                         

Using equations (5) and (6), its first and second derivatives with respect to real time are: 
(30)                                       

and 
(31)                                                  

1. For  (at the final position of segment). Satisfying the boundary conditions at the final position of the trajectory, we have: 
(32)                                                                                                  
(33)                                                        
which gives 

 
and 
(34)                                                                  
which yields 

 
2. For  (at the starting position of this trajectory segment). Satisfying the boundary conditions at this position, we have, at 
the set-down position:  
(35)                                                         
and 
(36)    

and 
(37)                     

The velocity and acceleration continuity conditions at this set-down point are: 
(38)       and          
or 
(39)                                        
and  
(40)                                                         

The difference of joint angles between successive trajectory segments can be found to be: 
(41)                                           
(42)                                                          
and 
(43)                                   

All the unknown coefficients of the trajectory polynomial equations can be determined by simultaneously solving equations 
(41),( 22), (24), (42), (39), (40) and (43). Rewriting them in the matrix vector notation, we have: 

                                                   
where 

(45)        

(46)                                  

and 
(47)                   
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Fig. 2 KUKA manipulator 

 
 
Fig. 3 The joint trajectory of the gripper 
 

 
Then the planning of the joint trajectory (for each 

joint) reduces to solving the matrix vector equation (44): 
(48)                                                                                           

 
(49)       
                                                                                 

The structure of matrix C makes it easy to compute 
the unknown coefficients and if the inverse of C always exists 
if the time intervals t i ,  i = 1,2,..n are positive values. Solving 
Eq. (43-49), we obtain all the coefficients for the polynomial 
equations for the joint trajectory segments for joint j.  

Since we made a change in normalized time to run  
from  [0,   1]   to  [ — 1,0]  for the last trajectory segment, after 
obtaining the coefficients ani  from the above matrix equation, 
we need to reconvert the normalized time back to [0, 1]. This 
can be accomplished by substituting  into  in 
equation (29). Thus we obtain: 

 
          

 
           

(50)         
     In figures 2 and 3 we have the joint trajectory for a gripper 
which it is attached to KUKA manipulator. 
4. CONCLUDING REMARKS 

Two major approaches for trajectory planning have 
been discussed: the joint-interpolated approach and the 
Cartesian space approach. The joint-interpolated approach 
plans polynomial sequences that yield smooth joint trajectory. 
In order to yield faster computation and less extraneous 
motion, lower-degree polynomial sequences are preferred. 
The joint trajectory is split into several trajectory segments and 
each trajectory segment is splined by a low-degree polynomial. 
In particular, 4-3-4 has been discussed. Because servoing is 
done in the joint-variable space while a path is specified in 
Cartesian coordinates, the most common approach is to plan 
the straight-line path in the joint-variable space using low-
degree polynomials to approximate the path. These 
techniques represent a shift away from the real-time planning 
objective to an off-line planning phase. In essence, this 
decomposes the control of robot manipulators into off-line 
motion planning followed by on-line tracking control. 
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