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Abstract: NAVSTAR/GPS is a spatial positioning system which answers the questions „What time, what position, and what velocity is 
it?”quickly, accuately and inexpensively anywhere on the globe. In this paper we present a mathematical form of disruptive forces that 
affect the orbits of GPS satellites. 
 
1. INTRODUCTION 

In 1973 The United States Department of Defense 
created a spatial positioning system: NAVSTAR/GPS 
(Navigation System with Timing And Ranging / Global 
Positioning System) under the authority of the Joint Program 
Office (JPO). The standard configuration of the GPS 
constellation is composed of 24 satellites that provide global 
coverage. The corresponding scheme entails a layout on 6 
quasicircular orbits (e = 0.003), shifted by 60°  in the right 
ascension of the ascending node and with an inclination of 55° 
towards the equatorial plan. The spare satellites used in 
different stages are activated while on ground and are mainly 
used as replacements in case of a possible malfunction.  

GPS satellites are spatial vehicles that carry radio-
electronic equipment – meant to process and transmit signals 
towards the terrestrial users, together with an atomic clock, 
batteries and auxiliary equipment. 
2. THE EQUATIONS OF DISRUPTED MOVEMENT  

The Keplerian orbit of a satellite is a purely 
theoretical notion, as it doesn’t take into consideration the 
disruptive factors that really influence its dynamics. In order to 
describe the real relative movement – therefore disrupted – of 
the satellite around the attractive body – Earth – we need to 
sum up all the disruptive accelerations that impact the 
deviation from the Keplerian movement in the right side of the 
second order differential equation (homogeneous) of the 
undisrupted relative movement. Thus we obtain the second 
order differential equation (non-homogeneous) of the 
undisrupted relative movement: 
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where G Mµ = ⋅ represents Earth’s gravitational parameter, 

whereas d r

  represents the  sum of all the disruptive 

accelerations. For GPS satellites, the module of the central 
acceleration (-µ/r2) is 104 times bigger than the sum of all these 
disruptive accelerations. 
There are two main methods of determining a disrupted orbit 
for an artificial satellite: 
1. Analytical method, by developing a mathematical model for 
the disruptive potential, which will help determine the way in 
which the orbital element varies in time. 
2. Numerical method, by developing a model for disruptive 
accelerations, upon which the non-homogeneous second 
order differential equation of disrupted movement will integrate 
directly, providing the satellite’s coordinates on every stage. 
3. ANALYTICAL METHOD 

In order to find the analytical solutions (usually 
approximate results) we will apply the perturbations theory. To 
start, we will take into consideration just the homogeneous part 
of this equation, which will lead to a Keplerian orbit defined by 
the 6 constant orbital parameters [a, e, i, ω, Ω, τ], notation 
used below ρ io (i = 1..6), considered at τ = t0.  

Each of the disruptive accelerations dr  creates 

time variations 
0i

p  for the orbital  parameters. Therefore at 

any given time t, the r i  parameters describe an ellipse called 
osculating (instantaneous orbit), different than the initial one 
(Keplerian), defined by the following parameters: 
                                                    ( )0i i0 0

p =p +p × t-ti
                                  

It is essential to determine next the 
0i

p  variations. To this end, 

we will compare the disrupted movement (that is the osculating 
ellipse r i  at time t) with the Keplerian movement (Keplerian 

ellipse r io at time t0). Thus we have the following equations 

for the position vector r  and the speed vector r  while in 
disrupted movemen 
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By deriving these relations in relation to time, we get: 
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the Lagrange planetary equations (EPL), where the disruptive 
acceleration is replaced by the disruptive potential ℜ (or 

disruptive force function), where ∇ℜ = d r . 
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Thus the disruptive force function must be defined 
through its components (Gauss method): 
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The relations between the Gaussian components of 

the disruptive force and the time variations for the osculating 
orbital elements are as follows [2, 11]:  
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4. DISRUPTIVE FORCE FUNCTIONS 

Numerous disruptive forces (accelerations) act on an artificial satellite, and even though they are much smaller (in terms of 
magnitude) than the central force (acceleration), they do have a significant impact on its dynamics. Judging by their nature we will 
categorize them to gravitational disruptive accelerations and non-gravitational disruptive accelerations. 
4.1 The Disruptive Force Function of the Non-central Earth Gravitational Field 

The general form of Earth’s gravitational potential is represented by infinite series of spherical harmonic functions, and when 
defined in polar coordinates (r,ϕ,λ) will be  [8]: 
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Notations used by Kaula [10].  

The first term (µ/r) represents the potential (V0)of spherical Earth whereas its gradient [grad (µ/r) = - µ

r /r3 ] is the central 

acceleration in Keplerian movement.   
Thus the disruptive force function corresponding to the non-centrality (ℜT) will be obtained by making the difference: 

                    ℜT = V - V0 =                                               
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4.2 The Disruptive Force Function of the gravitational attraction exerted by the Sun and the Moon  
The attraction exerted by the Sun and the Moon represents the second most important gravitational influence over the 

movement of artificial satellites. In order to evaluate it, we will take into account the following simplifying hypothesis: 
1) The Moon and the Sun have similar effects, therefore will be treated analogously 
2) We will neglect Sun and Moon movement during one complete revolution of the artificial satellite  
3) Perturbations caused by the planets part of the Solar System will be considered null. 

The Disruptive Force Function of the gravitational attraction exerted by the Sun and the Moon expressed by osculating orbital 
elements was proved by several authors [7, 13] and is analogous to the expression of the non-centrality force function: 
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Am şi Bm are the coefficients of the spherical harmonics expressed in absolute equatorial coordinates (α′, δ′) of the third body: 
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εm =1 if m=0 and εm=0 if m>0, 
function Fmp(i) is the inclination function [10], 
function Gpq (e) is the eccentricity function [10] 
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4.3 The Disruptive Force Function of the direct solar 
radiation pressure  

When considering the non-gravitational forces that 
influence the movement of an artificial satellite in general and 
particularly the movement of a GPS satellite, the pressure 
exerted by the solar radiation plays an important part. Musen 
[13] was one of the first who insisted on taking into 
consideration this disruptive force, as well as Parkinson et al. 
(1960) and it was taken into account during the study of 
Vanguard 1. Only after considering this disruptive acceleration 
(leaving aside the gravitational ones already mentioned) are 
we able to obtain an adequate report between calculations and 
observations. 

The pressure of light is the mechanical action of the 
solar light upon the satellite body and it widely influences the 
orbits of satellites with high flying altitudes, such as GPS 
satellites.  
The following hypothesis will be considered: 
1) The Sun’s parallax will be neglected, 
2) Earth’s movement around the Sun is uniform, 
3) The solar flux is constant along the orbit, with the exception 
of the shadow arches, 
4) The disruptive force function is not influenced by the 
satellite’s shape, but by the area-mass ratio, 
5) The indirect effect (albedo) will be neglected. 

Under the conditions above, the disruptive 
acceleration introduced by direct solar pressure will be: 
F = k’⋅(A/m)⋅q                                                     
where: 
 k’ = satellite’s reflectivity constant. For calculations 
we will consider k = 1 if the reflection or the absorption of solar 
light by the surface of the satellite is total, and k’ = 1.44 if the 
reflection is diffuse, 
 A = the area of the transversal section of the 
satellite, perpendicular on the direction of the disruptive force. 
 m = satellite’s mass, 
 q = the ratio between the solar constant and the 
speed of light. 
4.4 Relativistic effects 

The disruptive acceleration introduced by the 
relativistic effect is a consequence of artificial satellites moving 
inside the Earth’s gravitational field. In a simplified expression 
(taking into account only the second harmonic) [9]: 
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For average values of the geocentrical vector radius 
(r), large semi-axis (a) and the eccentricity (e) of the GPS 
satellites’ orbits, the disruptive acceleration caused by 
relativistic effects will have a size order of 3⋅10-10 m⋅s-2. 
5. NUMERICAL METHOD 

In order to calculate the GPS satellites’ orbits, two 
methods will be used. The first one is based on the analytical 
solutions of the Lagrange planetary equations, expressed in 
the terms of Keplerian orbital elements terms. The second 
method is based on the numerical solution of the second order 
differential equation of the disruptive relative movement: 

  
3r r
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The numerical solution of the GPS satellites’ orbits is 
based on the direct numerical integration of the second order 
differential equations of the disrupted relative movement. 

If the initial conditions are defined (mainly the 

position 0x  and the speed 0x  considered at launching time 

0t ), the equations can be integrated numerically. The 
Keplerian orbit will be cross-referenced as well. Thus only the 
small differences between the total acceleration and the 
central acceleration will have to be integrated. As a result, the 
precise position will be given by the sum of the (incremental) 
growth dx  and the position vector on the referenced ellipse. 
The second order differential equations usually transform into 
a system of 2 first order differential equations, such as: 
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The numerical integration of this system is made by 
applying a fourth order Runge Kutta algorithm. 

Fourth order Runge Kutta method was used to 
calculate the rectangular coordinates and the osculating orbital 
elements of GPS satellites, by integrating numerically the 
equations of disrupted movement, considering on a selective 
basis the perturbations produced by: 
1) The non-centrality of Earth’s gravitational field; 
2) Sun and Moon’s gravitational attraction; 
3) Direct solar radiation pressure; 
4) Relativistic effects. 
For the initial conditions: 

 
Tab. 1 Initial conditions 

0X = 2017,873929 0Y = -15394,807277 0Z = 21652,716838 
[Km] 

0XV = 3,740049 
0YV = 0,911161 

0ZV = 0,306443 [Km/s2] 

SX = 146514888,8718 SY = 32514335,1508 SZ = -8699485,9205 
[Km] 

LX = 379821,1117 LY = 25054,9574 LZ = 53622,5347 
[Km] 

 
We obtained the following values for the rectangular coordinates, speeds and osculating orbital elements over a timeframe of 4 hours. 
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Tab. 2 Ephemerides values calculated 4 hours time 

00:00:00 
X =-16,2702 Vx =3,8272 Ω = 16,920 ω = -100,583 
Y =-15526,5014 Vy =0,4134 i =54,727 M =154,853 
Z =21652,7029 Vz =0,3064 e =0,00355 a =26558,874 

00:15:00 
X =2425,8676 Vx =3,8327 Ω = 16,919 ω = -107,974 
Y =-15215,1157 Vy =0,4529 i =54,727 M =162,590 
Z =21743,2188 Vz =-0,1055 e =0,00362 a =26556,918 

00:30:00 
X =4869,5214 Vx =3,7943 Ω = 16,919 ω = -116,636 
Y =-15030,7748 Vy =0,4888 i =54,727 M =170,242 
Z =21463,3137 Vz =-0,5156 e =0,00369 a =26555,104 

00:45:00 
X =7266,8831 Vx =3,7124 Ω = 16,918 ω = -126,475 
Y =-14972,9626 Vy =0,5262 i =54,727 M =177,825 
Z =20817,8747 Vz =-0,9167 e =0,00375 a =26553,458 

01:00:00 
X =-1228,0675 Vx =3,8441 Ω = 16,919 ω = -106,528 
Y =-15341,2399 Vy =-0,3586 i =54,727 M =161,183 
Z =21754,3684 Vz =-0,0304 e =0,00361 a =26557,265 

01:15:00 
X =1208,7705 Vx =3,8219 Ω = 16,919 ω = -114,961 
Y =-15645,3951 Vy =-0,3170 i =54,727 M =168,848 
Z =21541,7820 Vz =-0,4413 e =0,00368 a =26555,422 

01:30:00 
X =3582,4296 Vx =3,7571 Ω = 16,918 ω = -124,593 
Y =-16066,2011 Vy =-0,2657 i =54,727 M =176,438 
Z =20962,3097 Vz =-0,8446 e =0,00374 a =26553,742 

01:45:00 
X =5848,4114 Vx =3,6520 Ω = 16,918 ω = -127,315 
Y =-16587,1013 Vy =-0,1998 i =54,727 M =176,008 
Z =20025,8810 Vz =-1,2334 e =0,00380 a =26552,241 

02:00:00 
X =-4764,8181 Vx =3,6310 Ω = 16,919 ω = -107,500 
Y =-14644,2430 Vy =-1,3099 i =54,727 M =162,133 
Z =21748,1699 Vz =-0,0813 e =0,00362 a =26557,030 

02:15:00 
X =-2491,8759 Vx =3,6150 Ω = 16,919 ω = -116,086 
Y =-15565,1417 Vy =-1,2618 i =54,727 M =169,787 
Z =21490,0052 Vz =-0,4916 e =0,00369 a =26555,206 

02:30:00 
X =-314,4974 Vx =3,5606 Ω = 16,918 ω = -125,857 
Y =-16580,0206 Vy =-1,1930 i =54,727 M =177,371 
Z =20865,8480 Vz =-0,8934 e =0,00375 a =26553,547 

02:45:00 
X =1729,0450 Vx =3,4715 Ω = -127,134 ω = -126,840 
Y =-17660,8966 Vy =-1,0996 i =175,656 M =175,077 
Z =19886,3795 Vz =-1,2801 e =0,00380 a =26552,069 

03:00:00 
X =-8462,0568 Vx =3,1633 Ω = 16,919 ω = -107,332 
Y =-12864,0205 Vy =-2,2124 i =54,727 M =161,971 
Z =21749,6313 Vz =-0,0726 e =0,00362 a =26557,070 

03:15:00 
X =-6505,9208 Vx =3,1611 Ω = 16,919 ω = -115,892 
Y =-14344,1799 Vy =-2,1624 i =54,727 M =169,626 
Z =21499,2637 Vz =-0,4830 e =0,00368 a =26555,243 

03:30:00 
X =-4665,8597 Vx =3,1272 Ω = 19,918 ω = -125,639 
Y =-15890,8677 Vy =-2,0825 i =54,727 M =177,211 
Z =20882,7442 Vz =-0,8851 e =0,00375 a =26553,580 

03:45:00 
X =-2971,6601 Vx =3,0660 Ω = 16,918 ω = -126,921 
Y =-17467,1825 Vy =-1,9698 i =54,727 M =175,237 
Z =19910,6253 Vz =-1,2721 e =0,00380 a =26552,098 

04:00:00 
X =-11510,5064 Vx =2,4807 Ω = 16,918 ω = -107,332 
Y =-10227,3003 Vy =-2,9575 i =54,727 M =161,970 
Z =21749,6313 Vz =-0,0726 e =0,00362 a =26557,070 
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6. CONCLUSIONS 

Numerical data concerning the precise ephemeride 
values of the GPS satellites may be obtained on the National 
Geodetic Survey website http://www.ngs.noaa.gov/orbits/. 

Această lucrare calculează pe baza unui modul 
software elementele de efemeridă ale orbitei perturbate ale 
unui satelit GPS ca urmare a acţiunii însumate a forţei 
perturbatoare datorată necentralităţii câmpului gravitaţional al 
Pământului, a atracţiei gravitaţionale a Soarelui şi a Lunii, a  
presiunii radiaţiei  solare directe şi a efectelor relativiste. 

Avantajul acestei metode constă în faptul că se poate controla 
precizia coeficienţilor, a formulelor, a parametrilor şi a erorilor 
rezultate din trunchierea numerică. Mai mult, se pot trage 
concluzii privind dinamica erorilor orbitale ale sateliţilor GPS. 
Valorile numerice ale elementelor de efemeridă sunt date 
pentru 4 ore pornind de la datele iniţiale şi ora 00:00:00 UTC.  

O importanţă deosebită trebuie acordată formulelor 
şi valorilor coeficienţilor care intră în modelarea forţelor 
perturbatoare. 
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