
“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIV – 2011 – Issue 2
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania

IMPLEMENTATION OF A GRAPHICAL ENVIRONMENT FOR SIMULATION OF MATHEMATICAL

MODELS

NIkola VALCHANOV1

Anton ILIEV2

1 Plovdiv University, Department of Applied Mathematics and Modeling, Bulgaria
2 Plovdiv University, Department of Applied Mathematics and Modeling, Bulgaria

Abstract: This paper follows through the implementation of a graphical environment for simulation of mathematical models. It deals with
design and implementation issues of this type of applications. The paper offers a plug-in mechanism for dynamic use of pluggable
computational libraries and performance optimization techniques for distribution of computations for various simulations between system
nodes. The environment comprises of a graphical designer for building mathematical models using stock-flow diagrams, data extractor
for converting the diagram to a parser readable string, mathematical core for running the simulations and a set of tools for adequate
display of the simulation results.
Keywords: graphical simulation environment, stock-flow diagrams, mathematical model simulation, software architecture, distributed
systems.

INTODUCTION
The computer simulation tools have become an integral part of the abstract models research process because of the evolution of the
information technologies. These tools allow us the extraction of behavioral information for a given conceptual model by using real–time
modeling (simulation). The contemporary simulation environments [2, 3, 4] offer instruments for building abstract models, conduction of
simulations and analysis of the extracted information. These types of systems are vastly used in both theoretical and practical problems.
This paper describes the process of building a graphical environment for simulation of mathematical models by using information
system architecture. It proves the existence of benefits from using the suggested information system model and its usefulness in various
fields of the information technologies.
MATHEMATICAL FOUNDATIONS
The graphical environment for mathematical models simulation focuses on mathematical models, described by differential equations.
Note an example of this type of differential equations is the so called system of Lotka–Volterra equations, which describe a model of the
predator–prey biological system.
The simulation of such models is often done by application of iteration numerical methods. In this paper we will apply both well known in
the literature Euler method and Runge–Kutta method for the initial value problem of first order ordinary differential equation of the type:

(,)Y f t Y′ = 0 0()Y t Y=

where Y is scalar.
 Now we will give a brief description of the used numerical methods:

 Euler method
Euler method is one of the simplest numerical methods for solving initial value problems of ordinary differential equations

The iteration’s value 1+nY in a given moment 1+nt
is calculated based on the step h and the value nY retrieved by the previous

iteration by 1 (,)n n n nY Y hf t Y+ = +
Common fourth order Runge–Kutta method
The common fourth order Runge–Kutta method (RK4) is one of the most commonly used methods of its kind. It is far more precise than

the Euler method. The computation of the next iteration’s value 1nY + in a given moment 1+nt
is calculated based on the step h and

the previous value nY by:

1 1 2 3 4

1 (2 2)
6n nY Y k k k k+ = + + + +

1n nt t h+ = +

where

1 (,)n nk hf t Y=

2 1

1 1,
2 2n nk hf t h Y k = + +

3 2

1 1,
2 2n nk hf t h Y k = + +

()4 3,n nk hf t h Y k= + +

SYSTEM REQUIREMENTS
All graphical environments for mathematical models simulation
offer tools that simplify the construction of models, their

simulation and the analysis of the simulation results. The main
challenges in this type of systems are:

 222

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIV – 2011 – Issue 2
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania

• Finding an adequate representation of the
mathematical models that is intuitive and easy to use by the
end user,
• Building a pluggable computational libraries
mechanism, that simplifies the integration of new numerical
methods in the system and gives to the end user the possibility
of choosing the best fitted method for each simulation,
• Means for distributed execution of the
simulations, which allow the end users to continue their work
while a given simulation process is still active,
• Choosing the right tools for representation of the
simulation results, facilitating the model analysis process.
Adequate representation of the mathematical model
The method for visual representation of the mathematical
models should be coordinated with the system specifications.
One of the most intuitive methods for representation of
mathematical models, described by differential equations, is
the Stock–Flow diagram [7]. It is one of the simplest methods
for definition and analysis of dynamic systems.
The idea of all Stock–Flow constructions is based on the
assumption that every dynamic behavior is manifested when
flows are accumulated into stocks.
Every Stock represent an entity accumulated in time by
incoming flows and/or depleted by outgoing flows. The
quantities in the stocks can be affected only by flows.
The flows change the quantities in the stocks in time. Usually
there is a clear distinction between incoming and outgoing
flows. The flow is defined by its debit which is recalculated on
every time interval.
Pluggable computational libraries mechanism
One of the problems in mathematical model simulation
systems is the integration of new numerical methods which is
connected with the abundance of various numerical methods
some better suited for a specific purpose than others.
The mechanisms for pluggable tools are a vastly used
approach for managing application tools and allowing third
party developers to produce custom pluggable instruments.
These mechanisms index the available tools automatically and
give the system a unified way to access them. The system
structure does not change when a new tool is added and the
tools themselves are based on an open specification common
for the system.
This kind of indexing mechanism can be used for
computational libraries management in the graphical
simulation environment for mathematical models.
Means for distributed execution of the simulations
One of the performance criteria of computations driven
systems is their ability to work in a cluster and distribute the
computations amongst different system nodes.
The mathematical computations used in the numerical
methods described earlier cannot be divided into
synchronizable subproblems. Therefore the method of
computations distribution can be described in a simple system
use–case by the following way:
1. The application indexes all available nodes in the
cluster, providing tools for simulation of mathematical models
of that type;
2. The end user chooses a specific computational
library for conducting the simulation process and starts the
simulation;
3. The system finds the most suitable node offering the
desired computational library creates an instance and provides
it with an adequate input;
4. The terminal running the user interface is not
blocked by CPU intensive computations while the tool
simulates the model on the specific cluster node. This way the

end user is allowed to continue his work on the model or start
new simulations.
The right tools for representation of the simulation results
The tools for graphical representation of the simulation results
play a crucial role in the mathematical model analysis process.
These tools facilitate the identification of correlations between
the members of the researched model.
The numerical methods, used in the graphical simulation
environment for mathematical models provide information
about the model participants per iteration. The natural way is
displaying the obtained data by a tabular structure. At the
same time the tabular view is not always the most productive
way of data representation.
The graphical representation provides a different, visual
look on the results that often gives a better perspective to
the viewer. The numerical methods mentioned above
allow us the construction of graphical description that
follows the changes in a given model’s member in time.
SYSTEM IMPLEMENTATION
Based on the system requirements we can divide the system
implementation in the following way:
1. Building a module for simulation of mathematical
models that takes an input string, containing the list of
differential equations and initial values, which describe the
model;
1.1. Building a parser that extracts the system of
differential equations and initial values from the input string;
1.2. Building a mechanism that allows the use of
pluggable computational libraries for model simulation;
1.3. Developing algorithms for mathematical model
simulation using the Euler and RK4 methods and
implementation of pluggable computational libraries for each
one of them.
2. Designing a graphical component for building and
editing of mathematical models by Stock–Flow diagrams;
3. Building the graphical component in the context of
the information system architecture suggested in [8].
3.1. Establishing the communication between the
graphical component and the model simulation module;
3.2. Building tools for tabular and graphical
representation of simulation results;
3.3. Implementation of tools for storing mathematical
models and their simulation results;
3.4. Implementation of distributed execution of the
different simulations.
Building a module for mathematical model simulation
The internal dependencies between the different tasks, related
to the system implementation, require the strict definition of a
string format for representing differential equations and initial
values for model’s members.
Let us use the following syntax:
Hares'=Hares*50/100
-(Hares*20/100)
Hares=100
Once the syntax is fixed we can proceed to the implementation
of a parser for extracting differential equations and initial
values from the input string. The parser builds two associative
arrays – one with initial values, and another with equations.
The keys in both arrays are the names of the corresponding
model’s members.
In order to simplify the development and integration of new
computational libraries in the module for simulation of
mathematical models we need to build a dynamic loader. The
module provides an interface that makes computational library
integration possible.

 223

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIV – 2011 – Issue 2
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania

Figure 1. IModelSimulator interface

The module configuration contains the physical path

to the folder with the pluggable computational libraries. When
the module is accessed for the first time all files in that folder
are indexed and the module tries to load them as assemblies.
If successful the loaded assemblies are checked for
compatibility and if compatible the module extracts information
for the specific numerical method that each assembly
implements. In the end the module obtains a list of all the
available numerical methods.
When executing a simulation the client code feeds the
mathematical model to the module using the input string and
specifies the desired numerical method that should be used for
the simulation. The assembly implementing the method is
extracted from the prebuilt list. After the assembly identification
the module searches it for IModelSimulator interface
implementations. When multiple implementations are found
the module works with the first. After the implementation is
found a member is instantiated and the simulation is run.

Each mathematical library implements a specific numerical
method. Two libraries are built for the implementation of the
graphical simulation environment for mathematical models.
The first one is connected with Euler method and the second -
with RK4 method. Because of the similarities in the
algorithmization of the mathematical apparatus of the two
methods we will review only the differences.
The expected input parameters for the computational tools are:
• Step – used in the corresponding numerical method;
• Time – upper boundary marking the end of the
simulation process;
• Two associative arrays – one with the initial values
for the model’s members and another with their differential
equations.
The storage structure of the result from the simulation process
is also an associative array of lists containing the values from
the simulation iterations for every model’s member.
The algorithm that implements the mentioned numerical
methods can be described with the following block–diagram:

Figure 2. Algorithm used in the implemented computational libraries

After initial values extraction we create the data structure that
will store the simulation result. We initialize the structure with
elements – one for every model’s member. The keys of the
elements of the associative arrays are the names of the
model’s members. They are all initialized with an empty list of
real numbers. The next stage of the algorithm execution is
computing of the numerical method iterations until the end of
the predefined interval.
When a specific model’s member is being processed, its
differential equation is extracted. The values of the model’s
members computed by the previous iteration are substituted in
the equation, except the currently processed member.
When Euler method is applied the currently processed
member is substituted by its value from the previous iteration.
The result of the equation (assigned to the nextValue variable
from the block–diagram) is stored in the result structure and it
is replaced in the array of current values of the model’s
members.
When RK4 method is applied we first calculate the four
auxiliary values. The model’s member for the current iteration
is then computed based on them. The calculated value is
stored in the result structure and it is replaced in the array of
current values of the model’s members.

Designing a graphical component for building of mathematical
models
In order to create a graphical editor that provides tools for building Stock–
Flow diagrams we first need to define architectural and functional
requirements towards it.
Architectural requirements:
• Simplified integration of new element types in the
graphical tool for building mathematical models;
• Facilitated element handling.
Functional requirements:
• Definition of the building blocks of the diagrams
• Managing diagram elements – add, select, move,
edit element;
• Connecting diagram elements;
• Connecting outgoing/incoming flow elements to
stock elements;
• Using elements for simulation results visualization;
• Resizing elements for simulation results
visualization;
• Extracting diagram information in an adequate
format.

 224

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIV – 2011 – Issue 2
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania

The architectural requirements are followed during

the system implementation in order to set strong foundations
and simplify the support of the tool.
The tool provides a seamless way of working with the different
diagram elements. This is achieved using interfaces for the
different functionalities that the element types implement.
These interfaces place an abstraction over the element types
and facilitate their management.
This abstraction layer makes adding a new element type as
easy as creating a new class which implements a set of
interfaces based on the desired element type functionality.
In order to meet the functional requirements we need to
specify the building blocks of the mathematical models
diagrams.

Stock – element representing a member in the mathematical
model. It can be connected to incoming and outgoing flows
describing the process of accumulation;
Flow – element describing the rate of accumulation/depletion
of a given entity in the stocks. The equations, describing the
dynamic behavior of the model’s members are defined by
flows;
Coefficient – element used to encapsulate computational
modules in the model. Specific blocks of given formulas can be
encapsulated in coefficients which in turn facilitate the
modifications of the mathematical models.
The set of interfaces includes the operations: drawing;
transformation; editing; connecting; resizing; extraction
of element information in adequate format.

Figure 3. Set of interfaces for the different functionalities of the diagram elements

A collection of IDrawable elements is kept in the

tool. When a specific operation needs to be executed on a
given element the collection items are casted to
ITransformable to identify the selected element. When the
element is found it’s casted to the interface corresponding to
the operation that needs to be executed.
Connection of elements is done by using the IConnectable
interface. Its method Connect connects two elements in an
oriented way accepting the target element as a parameter.
Once connected the start element stores a reference to the
target element. This allows the starting element to use the
target element in its expression.
The element types that implement the IEditable interface can
be edited. The interface obligates its implementations to
expose information about their editable properties using
PropertyDescriptor instances storing property name, property
type and providing means for extraction and manipulation of
property values of any instance of this type. This way the
IEditable implementations premise the implementation of
editable forms with automatic user interface generation based
on the editable properties of the currently edited IEditable
instance.
When connecting a flow with a stock the stock stores a
reference to the flow. The stock treats the flow as incoming or
outgoing based on the way the flow has been connected.
In the implemented graphical simulation environment for
mathematical models there are two main types of visualization
tools for simulation data display – graphical and tabular. These
tools implement all interfaces excluding the IRenderable.
Although they are diagram elements, they do not hold model
specific information and are ignored in the process of
extraction of information for the mathematical model from the
diagram elements.
The data visualization tools are the only elements that
implement the IResizable interface. The information about the
possible resize methods for a given item is available through
GetResizeType(X, Y), which returns information about the
available resize axes for a given point within the diagram
element.

The IRenderable interface is used to implement the extraction
of information about the mathematical model from the diagram
elements. The algorithm that extracts the information starts in
the stock elements. The Render() method is called for every
stock element. The result is a string of two lines that define the
initial value and the differential equation describing the model’s
member. The crawl of the model elements connected to the
stock and the generation of the initial value line are done in the
following few steps:
1. When the Render method in the stock is called it first
builds up the initial value line. It is composed of the name of
the stock and its initial value (both present in the stock
element)
2. In order to build the differential equation the stock
calls the Render() method of its incoming and outgoing flows.
The equation is build in the following manner:
Model member' = (incoming flow expression)-(outgoing flow
expression)
3. When the Render() method in the incoming/outgoing
flow is called, the flow checks if its expression contains
references to model variables other then the model’s
members. If such model variables exist, they are found in the
collection of references that stores the elements used in the
flow expression. The replacement of these elements is done
by substituting their references in the expression with the
result obtained from calling their Render() methods.
4. When the Render() method of an element of type
coefficient is called, the coefficient checks if its expression
contains references to model variables other then the model’s
members. If such model variables exist they are found in the
collection of references that stores the elements used in the
coefficient expression. The replacement of these elements is
done by substituting their references in the expression with the
result obtained from calling their Render() method.
After the algorithm’s execution, the tool passes the obtained
information to the module for simulation of mathematical
models. After the execution of the simulation the module
returns the set of all points for every model’s member. The

 225

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIV – 2011 – Issue 2
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania

obtained information is passed to the visualization tools that
display it in tabular or graphical way.
Building the graphical component in the context of
information system architecture
The information system architecture described in [8] offers
standard three layer application architecture. The business
logic contains a mechanism for module management. The
system architecture comes with a set of implemented base
instruments comprising of interfaces defining base structure

types supported by the system, base visual components that
use business layer tools that implement the supported system
types and tools for distributed execution of system layers in a
cluster. The expected benefits from using the suggested
architecture are code reuse and means for distributed
execution of model simulation.
According to the initial design of the graphical component we
created classes for each item type of the diagram and
interfaces for the different functionalities:

Figure 4. Class diagram of the classes and interfaces of the graphical component

The graphical component for building and editing mathematical
models was integrated in an edit form so that information
system architecture can be used for the graphical simulation
environment for mathematical models. In order to be fully
integrated as a custom editor the tool implemented the three
main functionalities that information system model demanded
– validation of the diagram, methods for extracting the diagram
and the simulation results in a serialized manner suitable for

storing in a data source and populating diagram based on
serialized information extracted from the data source.
In order to facilitate communication between layers information
systems use custom data structures that follow the data
model. These structures are based on the concept of Entity–
relationship models. For the representation of mathematical
models and their simulations results we created the
MathModel and ModelSimulationDataSet classes:

Figure 5. Entities for communication between layers

The MathModel class stores information about the

current version of the mathematical model. It stores the name
of the model as a string and the elements of the model in a
collection of ITransformable items. The
ModelSimulationDataSet class stores the result of a conducted
simulation for a specific version of the model. The current
version of the model could differ from the version of the
simulation. The model versions for each simulation are stored
only for consistency purposes.
In order to follow suggested information system architecture
we extended its business logic layer with the MathModellingBL
class. It implements the structural type master–details
(IMasterDetailsBL interface). The master items type in this
implementation is the MathModel class, the details are
implemented as a collection of ModelSimulationDataSet
instances.

In order to implement the communication with the data source
when working with the MathModel and
ModelSimulationDataSet classes we created the
MathModellingDA class in the data access layer of the
suggested information system architecture. It handles the
communication with the data source and isolates its inner work
from the business layer of the application.
Since we’re strictly following the architecture suggested in [8]
we could implement a distributed model of execution of the
system layers. Every layer executes on a different system
node in a cluster providing means for remote instantiation and
access to its tools. The business layer implements the
mechanism for module management within the system and
provides access to the mathematical model simulation module.

 226

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIV – 2011 – Issue 2
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania

Figure 6. Distributed model of execution of the system layers

For the implementation of the graphical user

interface we extended the existing presentation layer of the
suggested information system model. We used the base visual
components that work with the interfaces for the different
structural types. The two main visual components in the

system for building and simulation of mathematical models are
a form for visualization of all stored mathematical models and
information, obtained from their simulations and a visual
component for editing mathematical models, containing the
tool for building and editing of mathematical models.

Figure 7. Form for visualization of all stored mathematical models

The functionality of the form for visualization of all

stored mathematical models inherits from the base visual
component for structural type master–details and works with
the MathModellingBL class. Since most of the operations
(record navigation, create, edit, delete, save, update) are
common for all types of records within an information system

the base visual components implement it and use the
interfaces for the different structural types to extract the
needed information from the business logic classes thus
stimulating code reuse.
The edit form takes a Math Model instance and loads it in the
visual tool for building mathematical models.

Figure 8. Form for editing mathematical models

 227

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIV – 2011 – Issue 2
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania

The edit form frm Math Model Edit inherits from the base edit
form visual component and implements extracting model
information form controls into a Math Model instance,
extracting model information from Math Model and populating
controls and data validation.
CONCLUSION
The process of the implementation of graphical simulation
environment for mathematical models was followed through.
The result was a functional graphical simulation environment.
The suggested design for the graphical component for building
mathematical models is applicable in multi-purpose
diagrammer component implementation.

The suggested application design included plug-in
mechanisms for dynamic use of pluggable computational
libraries. The mathematical foundations of the simulation
problem were analyzed. The developed algorithms were used
to create computational libraries for mathematical models
simulation.
A model for distribution of the simulation process between
system nodes was suggested. The use of information system
architecture for the implementation of the graphical simulation
environment for mathematical models allowed code reuse and
saved time and resources during implementation.

REFERENCES
[1] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software, Addison
Wesley, 1994
[2] Vensim simulation software, http://www.vensim.com
[3] Stella simulation software, http://www.iseesystems.com
[4] AnyLogic simulation software, http://www.xjtek.com/
[5] Microsoft Corporation, Provider Model Design Pattern and Specification, http://msdn.microsoft.com/en-us/library/ms972319.aspx.
[6] J. Hart, Mathew B., Gilani S., Gillespie M., Olsen A., Visual Basic .NET Reflection Handbook
[7] G. Ossimitz, Stock-Flow-Thinking and Reading stock-flow-related Graphs: An Empirical Investigation in Dynamic Thinking Abilities,
System Dynamics Conference, Palermo, Italy, 2002
[8] N. Valchanov, T. Terzieva, V. Shkurtov, A. Iliev, Approaches in building and supporting business information systems, Information
technologies in business and management, 16-17 October 2009, Varna, Bulgaria, 100-106

 228

	NIkola VALCHANOVP1
	Anton ILIEVP2
	MATHEMATICAL FOUNDATIONS
	Euler method
	Common fourth order Runge–Kutta method

	SYSTEM REQUIREMENTS
	Adequate representation of the mathematical model
	Pluggable computational libraries mechanism
	Means for distributed execution of the simulations
	The right tools for representation of the simulation results

	The graphical representation provides a different, visual look on the results that often gives a better perspective to the viewer. The numerical methods mentioned above allow us the construction of graphical description that follows the changes in a g...
	Building a module for mathematical model simulation
	Designing a graphical component for building of mathematical models
	Building the graphical component in the context of information system architecture

	CONCLUSION

