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PARALLEL ITERATIVE ALGORITHM FOR SOLVING LARGE LINEAR SYSTEMS

IOAN POPOVICIU!
'Senior Lecturer Ph.D., Naval Academy “Mircea cel Batran”, Constanta

Abstract: Solving large linear systems Ax = b is the optimal control problems can be reduced directly to solving a linear system, are
reduced to quadratic programming problems in which the central place is occupied by solving a linear system. Also, such systems from
mesh differential equations with values at risk, such as for example Poisson equation and Laplace equation. One of iterative methods
for solving linear systems is iterative SOR method (success Overrelaxation). The paper proposes a parallel algorithm SOR method for
solving Poisson's equation and a generalization of this algorithm for solving a certain system Ax = b. The generalization of the algorithm
is based on partitioning the domain, resulting a parallel algorithm for solving a large

linear system, together with the analyse of the convergence.
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1. INTRODUCTION
Let the system of linear equations

Ax=b Ae K™, pe K 1.1)

. /. o . =
The system has the solution for any be K' ifmatrixAis regular (nesingulara).
Definition An iterative method is a function (linear or nonlinear)

o K'xK' > K’
characterized the relations:

xO(y,b)=y; x™V(y,b) =g(x™ (y,b),b),m>0 12)

where XO is the initial value of the string of iterations.

Definition X* = X*(b) is called a fixed point of the iterative method ¢ it X*= (I)(X*,b)

If the iteration {X(m) } is convergent, we have the following lemma:

Lemma1.1. Let ¢ be one iteration. If X~ = lim x™ (y,b) exists, then x * is fixed point of 0.
m—oo

Definition Iterative method (I) is called consistent for the system of equations AX = b, if for any be K , any solution of

AX= D is fixed point for ¢.

Definition An iterative method ¢ is convergent if for any be K/ there is a limit X*(b) of iterations (1.2) independent of initial
/

value,)(0 =ye K.

Theorem 1.1.[3] Let ¢ be a continuous function in the first argument. Then ¢ is consistent and convergent if:

I) A is nesingulara
II) AXx= D is true for any fixed point x of ¢

iii) lim x(m)(y,b) exist for any Y,b € K'.

Definition An iterative method ¢ is called linear if (|) (X, /7) is linear in x and b, adica exist the matrices M and N such that
o(x b)= Mx+ Nb (1.3)
Theorem 1.2.An linear iteration (I)(X, b) = Mx+ Nb can be represented as:

m-1
X(m)(X(O) ,b) =M"x©@ 4 Z M Nb, form=0
k=0
Proof : The demonstration is by induction. For m=0 expression of the theorem is written: X?(x?, b)=x?.

m-2
If the relationship is true for m-1 result; X(m)(X(O) ,b) = Mx™Y £+ Nb=M ( M ™ty ©@ 4 Z MK ij + Nb=

k=0
m-1
M"x® + > M*“Nb+ Nb

k=1
The matrix M is called the iteration matrix of ¢. An iteration of the form (1.3) represented as:
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x™Y = Mx™ + Nb (L.4)
is called the first normal form or normal form one.

For a consistent iteration ¢, each solution of Ax=0b is a fixed point of ¢ , that is X= Mx+ Nb. Then
X= Mx+ NAX involving
M+ NA=I

Then we have the following theorem:
Theorem 1.3. [18] A linear iteration ¢ is consistent if and only if the iteration matrix M is given by

M=1-NA (1.5)
Moreover if A is nesingulara then
N=(1- M)A (L6)
With the above representation
x™Y = xM _N(Ax™ —b),m>0 (L.7)
is called secondary normal form, and N is called secondary normal matrix.

x (™

Equation (1.7) shows that ca x™ is obtained from x* with a time correction of the defect (residual) A -b ) multiplied

by the matrix N.

. ) Ix/ ) ) . . .
Observation: Secondary normal form (1.7) with Ne K arbitrary, represent all the linear and consistent iterations.
Third normal form is an iteration of the form:

W(x™ —x™) = Ax™ —p (1.8)
where W is called the matrix of the third normal form.
Observation: If W is nesingulara, iteration (1.8) coincides with secondary normal form (1.7), where N= Wl.

If x is the solution of the system Ax= D then:

e(m) = X(m) — X is called error of the iteration X(m). (1.9)
From X™D = Mx™ + Nb and X= Mx+ Mb by subtraction we obtain:
e™ =Me™, m>0si e®=x—x. (1.10)
Result
e™ = Me™e® m>0 (L.11)
Note the defect (residual) Ax™ _b with
d™ = Ax™ —p (1.12)
Observation: a) The defect 5’ = A;(— b and the error E’ = ;(— X satisfy the equation
Ae=d (1.13)

b) The defect satisfy the equations:
- _1\m
d™ = AMA Y™, d© = Ax® b, d™=(AMA)"d® @1
) ] .
The convergence of iterative methods is given by the following necessary and sufficient condition:
Theorem 1.4. [10] A linear iterative method (1)()(, b) = Mx+ Nb is convergent if and only if §(|\/| )< 1 where §(|\/| ) is the

spectral range of the matrix A. 5(M ) is called the convergence rate of iterations ¢.

2. ITERATIVE METHOD SOR (SUCCESIVE OVERRELAXATION)

SOR method is an iterative method in which an iteration is defined by:
X(m+1) _ MaS)OR X(m) + N:}OR
where
MS® = (1 —oL)*[1- @)l + @U]= (D - oF ) *[1- @)D + oF ]
N =@l —oL)'D™ = 0(D - wE)™

L=D'E,U=D"'F, A=D-E-F

D =diag {A}
E = strictly lower triangular matrix
F = strictly upper triangular matrix
 is a amortization factor.
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The matrix of the normal form is:

W SOR :1(D—a)E)=1D— E
w w
Observation:

a) It 0 < ® <1 the method is called underrelaxation method;
b) If ® =1 the SOR method coincides with method Gauss — Seidel;

C) It ® > 1 the method is called overrelaxation method:;
The SOR method represented on components is defined by:

i-1
XM =1 @l by = ayx{mY - Za x|+ (1-w)a;x™ |/a,

j=i+l

i=12..n

In matrix terms SOR method is defined by:
x™ = (D-wL) (@U +(1-)D)X™ + (D -wl)™'b

The string vector x (0), x (1), X (2) .. build with the normal form SOR converges to solution x if:

max ‘ <1 sio<e<2

‘au
j¢|
SOR method has a sequential update of the form:

x®) cere x(K), ..

x®) cere x(&),

) cere ) e

For parallelization SOR method we propose a solution based on partitioning the domain, resulting a new method which we
call iterative method PSOR.

3. PSOR ITERATIVE METHOD FOR POISSON EQUATION

We consider the model problem (Poisson equation) in the space of two dimensions, defined by:

—Au(x,y)= f(x,y) for x,y e Q=(01)x(01)
u(x,y)=o(x,y) on T =aQ

For simplicity we consider the case U(X, y) =0onT. Discretizing differential equatione, the domain €2 is covered with a grid
(n + 1)>< (n + 1) with grid size h= 1/(“ + 1). Each point of the grid has coordinates

X= ih,y = jh (0 < i,j < n+1). If U(i,j) is solution approximated in X = ih, y= jh, then an approximation of the
Poisson equation is given by the 5 points formula:

Aui,j)-uli=1.j)-ui +1j)-uli,j ~1)-uli, j +12)=b(i.j)
where  bfi, )= —f(ih, jh)h?

Linear equation above is true for 1< 1] <Nandsowe have N =n equations with N unknown number of interior

points of the grid.
Poisson equation discretized with 5-points formula lead to the following linear algebraic system:

AUy =y = Uy — U — =h*f, ma,

U; = 0 pe o
which can be written as matrix

AU =F

SOR method using natural ordering on line with an initial value UI(J and a real number ® € (0 2) is defined by a sequence of form:

i+1, | jHL T
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i i+1, i,j+1
SOR method with red-black ordering, called method R / B, defines first the iterations in the red points by:
ui, )Y = -0, )Y +olul-1 )% +uli+1 ) +ul, -0 +u(i, j+10 +n2t, /4.
Then iterations in black points by:
u(i, 3 = @- oi, §)“7 +
ouli-1 )% +uli+1, Y +uli, j-1)* +ui, j+2)*Y +h2t, /4
To implement the PSOR method on p processors, the mesh Qh is decomposed into p disjoint subgrid meshes Qh,v such that

p
Qh = U Qh,V'
v=1

ulk+d) (1- co)ui(Jk) + %(h2 fij + u,('fﬁ) + ui(,kjtll) cu® )

For simplicity, each subgrid mesh Qh v is assumed to be a strip comprising the node points on (n - 2)/ P consecutive

horizontal (or vertical) grid lines, where n — 2 is assumed to be divisible by the positive integer p. The nodes adjacent to each strip are
used as the boundary nodes of the strip and thus the reference to a strip will be made to strip together with boundary nodes and will be
called extended strip.

As each strip has one or more common grid lines with extended neighbor strip. Each extended strip will be assigned on one
processor. The lines common grid at two extende strips represent the communication between 2 processors. Thus if the strip V is

assigned to the processor V, the new iterations associated with points on the first line of the grid domain Qh v are send to the
processor V -1 by the processor V, 2<v< P, as soon as they are calculated. Iterations send by the processor V, to

processor V — 1 used by the processor V — 1 in iterations associated with points on the last line of the strip associated with him.
A exemple with p =3 and n=11 is illustrated by next figure:

pd
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| |
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| [
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| !
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processor 1 processor 3

__II-
1 2 3 4 5

Each strip comprises three grid lines, and has two interior boundary grid lines. Thus, each extended strip consists of five grid
lines, wich have been locally numbered in Y-axis. For example, strip 2 comprises grid lines 5, 6, and 7, and grid lines 4 and 8 are its
interior boundary. So, the second extended strip comprises five grid lines; grid lines 4,5,6,7 and 8. Grid lines 5 and 7 in strip 2 also serve
as the right boundary of strip 1 and the left boundary of strip 3, respectively.Hence, when the iterates on grid line 5 are updated and
immediately sent to processor 1, wich is equivalent to updating the right boundary condition of strip 1,they will be in updating the iterates
on grid line 4 at processor 1.
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To get the iteration expressionof the PSOR method for Poisson equation, we need to decompose each strip Qh v into three
. _ 0Ol 2 3 1 3 . . ) -
sub-strips Qh = Qh LY Qh LY Qh ,» Where Qh y and Qh v contain the mesh points on the first and the last grid lines of

the strip Qh v respectively, and Qﬁ y contain the remaining part. Then the PSOR iterations are defined by:

(4]
(k) _ L (12 (k) (k+1) 1 (K) (k) (k) 1
uj = 2 (h fij FU U UL +ui,j+l)+(1_a))uij pe Q|

1)
ke) _ @ (, 2 (k+1) | (ke | o (k) () (K) 2
u; = 4 (h fi +U ) +U Y HUL + ui,j+1)+(1_a))uij pe C2p

w
(k+1) _ Y (2 (k+1) (k+1) (k) (k+1) (k) 3
Uy =7 (h fi+ule? +ul +uly +uli ) +(1-o)uf pe Qp
where v =1,2, K, p and Ui(jk) represents the k-th iterate at mesh point(Xi VY )

Each of the three subprobleme is resolved with SOR method by each processor.

4. THE GENERALIZATION PSOR METHOD
Let the linear system

Au=f 4.1)
where A= (a” )nxn is a sparse symmetric positive definite matrix, fis a given real column vector of order n and u is a unknown

column vector. We assume that (4.1) arises from a finite element or a finite different discretization of an elliptic boundary value.

Let Qh denote the set of mesh points on wich the unknown vector u is defined. Mesh point x is said to be coupled to mesh

point v provided that the corresponding entry aw of matrix A is not zero. Since (4.1) arises from a finite element or a finite different
discretization, the mesh domain Qh can be partitioned into p disjoint subgrids Qh,i (1S i < p), and each Qh,i can further
o o 1 2 A3 P
be divided into three disjoint parts Qf, i, 1, i, suchthat Qp = U Qpj si
i=1
_ 0l 2 3
Qi = Qi UQL; U
where Qﬁ i and Qi j are nonempty subsets of Qh j and comprise the mesh points of Qh j that are coupled to the mesh points

of Qn; with i<j, and j>i, respectively, and Qﬁ,i =Qp; - Qjﬁli — UQﬁ,i wich may be empty.

Based on this mesh partition, we assume that every n - vector u is decomposed into subvectors:

T
u=(UpU,,....U,) (4.2)
and each sub-vector Ui is further decomposed as:
LI
U, =(ui1,ui2,ui3) , i=1...,p @.3)

where Uil,Uiz,Ui3 comprise the components of u associated with the mesh points on the subgrid Qﬁ i Qﬁi and Qﬁi ,
respectively.
Partitions (4.2) and (4.3) induce a block partition A = (AJ )in:

AL AR AP
Aj=|A7 AP AP 1<ii<p
ALOAS AP

For Ay 0 with 1> J wehave
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11 12 13
noaAr Al
| a2t 22 23
A=A A AT (44)

31 32 33
i i i
where -}3 0.
In fact, let a.“\, be an nonzero entry of Aij with j <i. Mesh point x, wich is in Qh j is then coupled to the mesh
point v in Qh i Thus, the mesh point ¢ belongs to Q%] i - Similary, noting that the symmetry of A gives aw = aw # 0, we can
. o 3 13 ) . .
show the mesh point v is in Qh,i- Hence, aw S Aﬁj . Because all of the nonzero entries of Aij are contained in
Aﬁ?’ with j <1 , the other matrices Alfv must be zero.

similary, for A; # 0 withi < j

O 0O
Aj: 0O 0 0f j>i (4.5)
31
A" 00

where Ai?l # 0.
Using (4.2) — (4.6) we can write the linear system (4.1) into a block structure as follows:

i-1
u e anTr] | R 2ZANS
i i i i j-1
nopn arlut|=| R |1sisp ee

p
S WHY

31 32 33 3
i i i Ui
L j-i+l i

According to the above block form of the linear system (4.1), the k-th iterate of PSOR method can be denoted

T
U(k) = (U](_k) ng),...,UE)k)) where Ui(k) = (Uil’(k),Uiz’(k),UiS’(k)) We assume that the subproblem (4.6) on Qh,i is

implemented on processor i,l <i< P- Then, the PSOR method is defined by the following algorithm..
The algorithm PSOR

T
The k-th iterate of the PSOR method U(k) = (U](_k),ng),. . ,U (k)) with U i(k) = (U il’(k),U iz,(k)’ U i3’(k)) is defined

p
by:
- . C11L(k+) | . . 1
1) For 1 —1,2,..., P in parallel: Ui is obtained by applying one SOR sweep to the subproblem on th
i-1
11 _ 1 121 1 2,(k) 13y 1 3,(k) 13y 1 3,(k)
'iUi_Fi_ 'iUi - 'iUi _z 'jUj
j=1
2) Communicate Ui]"(k”') to other processors as needed.
3) For 1 =1,2,..., p in parallel: U iz'(k+1) and U is’(kﬂ) are obtained by applying one SOR sweep to the subproblem
2112 _ 2 21y 1 L,(k+1) 23y 1 3,(k) 2
Aii Ui _Fi _AiiUi _AiiUi pth,i
and the problem
p
3313 _ =3 31y L(k+1) 321 1 2,(k+1) 31 1 L(k+1) 3
AiiUi _Fi _AiiUi - i Ui _ZAijUj pth,i
j=i+1
respectively.
4) Communicate Ui3 ‘(k+l) to other processors as needed.
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To get a matrix expression of the PSOR method, we split matrix D_lA into
D'A=I-L-U @.7)
where D = diag{all,azz K, a,, }, L and U are strictly lower and upper triangular N X N matrices, whose entries are the

negatives of the entries of D_lA, respectively, below and above the main diagonal of A.

Similary, we split submatrix Di_lAii into

DA =1 - L -V 48
where Di = diag{A“ } Further, we split both L and U into
L=B+N and U=C+M (4.9)
where
L, 0 0 U, 0 0
a |0 L 0 el 0 u, 0
0 0 L L, 0 0 ..U,
0 0 0 .. 0 0 A, Ay .. A,
A, 0 0 .. 0 0 0 Ay .. A,
N=-DA, A, O 0|M=-D7|..
0 0 .. 0 A,
A, A, A, O 00 0 .. 0 |
With this notati)ns, the PSOR method, defined by E’SOR algorithm, can be expressed by:
u Y = M ogor (@™ + F(w), k =0,1,2,... (4.10)
where
M o (0) = [I ~o(B+M )]_1[(1— o)l +o(C +N )] (4.11)

Flo)=o[l —o(B+M)['D*f

M PSOR (a)) is called the PSOR iteration matrix.

5. The convergence of the PSOR method
A necessary condition for the convergence of the PSOR method is given in the following theorem.
Theorem 5.1 Let M PSOR (0)) be the PSOR iteration matrix. If S(M PSOR (0))) < l, i.e. the PSOR method is convergent, then

O<mw<2.
Proof Let det(A) be the determinant of a matrix A. By a well-know theorem of linear algebra, we know that det(A) is equal to the product
of the eigenvalues of A. With the definitions of B, C, M and N in (4.9), we have

li—ol; oAy oAy,

0 l,-oL, -+ ®
I—o(B+M)=| . 27 A:Qp
0 0 - Ip-ol,

and
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1~ o) +oU; 0 0
(1—0))|+o)(C+ N): _(DA21 (1_0))|2+(0U2 0
— Ay —0hy, (1_03)|p+coUp
Thus
p
det(l —w(B+M))= 1 det(l; —oL;)=1 61
i=1
and

dEt(M PSOR (CO)) = det(l - w(B +M ))det(M PSOR (03)) =
det[(1 — (B + M )M pgor ()] = det((1— o)l + o(C + N)) =

f{det((l—co)li toU,)=1-o)
Therefore

|1 - co| < 3(M pgor (@) <1 (5.2)
From witch it follows 0 < ® < 2.

A sufficient condition for the PSOR method is given in the following theorem.

Theorem 5.2. Let matrix A be symmetric positive definite. If Daca O<w< 2, then 8(|\/| PSOR (0))) <1, i.e., the PSOR method

converges.
Proof Let x be an eigenvector of Mpsor(®) and A be its corresponding eigenvalue such that:

Msor (co)X =AX
By (4.11), the above equality is written as:
[(1-0) +oC+N)x=2[l —0(B+M)x &3
Multiplying XT D to the both sides of (5.3), we find
(1— @)x" Dx+ ox DCx + ox" DNx
X" DX — X' DBX — ox' DMX
Set (= XT Dx > 0, XT DBx = a + IB and XT DNXx = rn+ ir2, o, B, nre R . clearly, the symmetry of matrix A

7\‘:

(5.4)

gives that XT DCx=a— IB and XT DMx = Il . By these notations, (5.4) becomes
- (1— co)q + m(a + r1)+ im(rz —B)
q-o(o+r)+io(r, —B)

Thus,

|7“|2 = (- o)a+ ol +r)P +0*B-r, )
[g-olo+n)F +w?(B-r,

By the positive definiteness of A, we have that for any X # 0.
0<x"Ax=x"(D-DB-DC-DN-DM )x=q-2(a+r)
So, when 0 < @ < 2,
(- o)+ oo+ ) ~[a-ofo+ 1) = 2-o)f2(a+r)-ak <0.
Hence, |7\,| < 1. This follows that S(M PSOR (0))) <1.

6. NUMERICAL EXAMPLE

In parallel algorithm is needed to use operations: scalar product, rare matrix-vector product. Using library functions and

macros Message Passing Interface (MPI), to solve linear Ax=Dhb , with a matrix NxN=960x960, with 8402 nonzero elements, which
gave the following results:
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Numar Numar Timp Timp Timp Timp Timp
procesoare iteratii calcul comunicare pentru pentru total
intre alocarea operatii cu
procesoare memoriei vectori
1 205 3.074 0.027 0.002 0.281 3.384
2 205 2.090 0.341 0.002 0.136 2.568
. time is given in minutes.

Applying parallel algorithm PSOR in solving Poisson's equation on a grid of 200x200 was obtained:
a) Cost calculation / iteration: close to O(N).
b) communication cost: O(N*?).

Number of Tolerance error Number iterations Execution time
processors

1 6E-3 216 5.7

2 6E-3 216 4.0

7. CONCLUSION
In parallel algotihm each processor execute k iterations of algorithm in parallel.
Defining:

b=block size of matrix A and vectors X,I' = b — AXon each node

p=number of processors

Teompip=total time to update blocks of vectors on each processor

T compzp=total time to compute and comunicate A and (r, r)

T compasp=total time for the computation of the inner products and global communication

T compap=total time to compute scalars

Here Tcompp IS the total time for 3 computation to update the vectors. It is observed that when matrix A is very sparse (density less than
5 percents), time exceeds the computation time. Thus, Tcompzp iS taken equal to teomm, the time to communicate a block of size b across
p processors. Tcompsp iNVOlves time for global communication and computation. It is tg,. Then:

Tpar = Tcomplp + Tcompz p + Tcomps p + Tcomp4 p
where:

Tcomplp = 3 * b * k * tcomp

Tcomp2 p = tcomm

Tcomp3p = 2 * b * k *tcomp + tglb

Tcomp4p =2*k *tcompa
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