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Abstract: In the present work our goal was to verify if the Dynamic Lyapunov Indicator (DLI), proposed recently by Saha and Budhraja 
as a new tool for distinguishing between ordered and chaotic orbits, gives correct conclusions when is applied to continuous dynamical 
systems. The behavior of certain continuous dynamical systems, like Ueda oscillator, Rossler oscillator, Rucklidge oscillator and 
Thomas oscillator has been studied and conclusions regarded DLI for ordered/chaotic orbits has been considered. The simplicity of the 
idea and the correlation between the conclusions obtained by DLI and other tools, show that DLI is a very consistent indicator in 
identifying ordered/chaotic orbits in continuous dynamical systems. 
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1. INTRODUCTION 

Although here is no universality accepted definition 
of chaos, most experts would concur that chaos is the 
aperiodic, long-term behavior of a bounded, deterministic 
system that exhibits sensitive dependence on initial conditions. 
Deterministic nonlinear systems which exhibit this ubiquitous 
phenomenon are said to be chaotic system. Common chaotic 
systems are categorized into two groups: maps and flows. 

Chaos theory is a scientific discipline that focuses on 
the study of nonlinear dynamical systems that are highly 
sensitive to initial conditions. Today, chaos theory is applied in 
many other scientific disciplines: mathematics, biology, 
computer science, economics, engineering, finance, 
philosophy, physics, politics, population dynamics and 
robotics. Appearance of chaos has been identified through 
various indicators in the past. We mention here only the well-
known tools: the time series method, phase-plane or phase-
space method, Lyapunov exponents, bifurcation diagram and 
the Poincare section of surface. 

Some recent tools seem to be more efficient for 
distinguishing between chaotic or regular orbits, especially in 
higher dynamical systems. First Lyapunov Indicator (FLI) was 
introduced by Froeschle et al. [1] and applied to the structure 
of a steroidal belt. Soha et al. applied the FLI to study certain 
discrete maps like Tinkerbell map, Ikeda map and Duffing map 
[2]. Other discrete maps (Gaussian map, Delayed logistic map, 
2-D and 4-D Froeschle map) have been studied by Deleanu 
[3]. Smaller Alignment Indices (SALI) was introduced by 
Skokos in 2001 [6] and has been successfully applied to some 
symplectic map and some Hamiltonian flows. Gottwald and 
Melbourne (2004, 2005) have introduced 0-1 test [7]. Dynamic 
Lyapunov Indicator (DLI) has been introduced by Saha et al. 
(2007) and applied for various discrete maps [4, 5]. They 
mentioned that, before accepting DLI as an indicator of 
regularity and chaos, other studies are necessary, especially 

for continuous dynamical systems. This is the reason of this 
paper. 

This paper is organized as follows. In Section 2 we 
recall the definition of FLI and DLI. In Section 3 we compute 
these indicators for some regular and chaotic orbits of four 
continuous dynamical systems. Conclusions and future 
developments are provided in Section 4. 
2. INDICATORS OF CHAOS: FLI AND DLI 
2.1 Fast Lyapunov Indicator (FLI) 

The FLI is defined as follows: 
Starting with a m-dimensional basis 
( ))0(),...,0(),0()0( 21 mm vvvV =  embedded in an n-

dimensional space with an initial condition 
( ))0(),...,0(),0( 21 nxxx  we take at each iteration the largest 
amongst the vectors of the evolving basis. Thus, the FLI is 
defined as: 

mjvFLI j ,..,2,1,sup ==                   (1) 

Froeschle has shown that FLI increases 
exponentially for chaotic orbits and decreases to zero or 
present a linear variation for a regular orbit. 
2.2 Dynamic Lyapunov Indicator (DLI) 

Saha and Budhraja are defined DLI as follows: 
Let J be the Jacobian matrix of a dynamical system. 

For some discrete time, we calculate the eigenvalues of the 
matrix J and then plot the largest eigenvalue: 

njj ,...,2,1,maxmax == λλ                    (2) 

where jλ  are the solution of 0=⋅− nIJ λ . It seems that 

these eigenvalues form a definite pattern for regular motion 
and are distributed randomly for chaotic orbits. 
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Figure 1: Phase-plane x-y for Ueda oscillator 

a) 1,05.0,5.7 === ωba  ; b) 1,25.0,3.0 === ωba ; c) 1,05.0,0.0 === ωba  
 
3. NUMERICAL RESULTS 

We have applied above defined indicators for the 
models given below: 
3.1. Ueda oscillator 

Chaotic oscillations of periodically driven nonlinear 
oscillator were studied in some details around 1980 by the 
Japanese researcher Ueda. Systems of such kind can be 
realized as mechanical and electronic devices. The equation of 
motion can be transformed into the first order system of 
differential equations: 

taybx
td
ydy

td
xd ωsin, 3 +−−==            (3) 

with a, b and ω  real constants. 

For 1,05.0,5.7 === ωba  and initial conditions 

( ) )0.0,5.2(, 00 =yx  the trajectory corresponds to a chaotic 
motion (see Fig. 1a). Indeed, the exponential increase of FLI in 
Fig. 2a indicates that the orbit is chaotic. The ordinate is taken 
with base 10. A random distribution for the DLI is obvious from 
Fig. 3a.Changing the parameter values to 

1,25.0,3.0 === ωba  and keeping the initial conditions the 
trajectory evolves to a limit cycle (Fig. 1b). FLI tends to zero 
(Fig. 2b) and a pattern in DLI is clearly visible for this case 
(Fig. 3b). 

The trajectory evolves to the fixed point (0, 0) for 
1,05.0,0.0 === ωba  (Fig. 1c). At the beginning, in the 

transition period [ ]300,0∈t , FLI increases to about 25010  
but then it decreases quickly to zero (fig. 2c). The transition 
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period is necessary for DLI to reach the constant value 05.0=DLI  (Fig. 3c). 
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Figure 2: Log(FLI) plots for Ueda oscillator 

a) 1,05.0,5.7 === ωba  ; b) 1,25.0,3.0 === ωba ; c) 1,05.0,0.0 === ωba  
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Figure 3: DLI plots for Ueda oscillator 
a) 1,05.0,5.7 === ωba ; b) 1,25.0,3.0 === ωba ; c) 1,05.0,0.0 === ωba  

 
3.2 Rossler oscillator 

The so called “Rossler” system is credited to Otto 
Rossler and arose from work in chemical kinetics. The system 
is described with three coupled non-linear differential 
equations: 

( )cxzb
td
zdyax

td
ydzy

td
xd

−+=+=−−= ,,         (4) 

The main features of the system can be deduced 
with non-linear methods such as Poincare maps and 
bifurcation diagrams. It is well-known that a bifurcation 
diagram is created by running the equations of the system, 
holding all but one of the variables constant and varying the 
last one. Then, a graph is plotted of the points that a particular 
value for the changed variable visits, after transient factors 
have been neutralized. Chaotic regions are indicated by filled-
in regions of the plot. 

 

 
 

Figure 4: The bifurcation diagram for the Rossler oscillator 
 

A graphical illustration of the changing attractor over a range of values is observed in Fig. 5.  
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Figure 5: Phase-plane x-y for Rossler oscillator 
a) 4=c ; b) 6=c ; c) 5.8=c ; d) 17=c  

 
In our study, we chosen 1.0== ba  and c was 

changed. The bifurcation diagram reveals that low values of c 
are periodic, but quickly became chaotic as c increases (see 
Fig. 4). This pattern repeats itself as c increases – there are 

sections of periodicity interspersed with periods of chaos, and 
the trends is towards higher-period orbits as c increases. 

As Saha and Budhraja said, the DLI plots form 
definite patterns in regular cases and are distributed randomly 
in chaotic case (Fig. 6). It is interesting to observe the 
relationship between the DLI plots and the period of motion. 
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Figure 6: DLI plots for Rossler oscillator 

a) 4=c ; b) 6=c ; c) 5.8=c ; d) 17=c  
 

In Fig. 7 it is displayed the evolution of log (FLI) for 
three cases, namely 5.8=c (period-4 orbit), 13=c  (sparse 
chaotic orbit), 17=c  (filled-in chaotic orbit). In all plots the 

FLI increase in time, following however completely different 
time rates (but if we consider separately these plots, it would 
be difficult to specify the type of orbit). 
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Figure 7: Log(FLI) plots for Rossler oscillator 

 
 
3.3. Rucklidge oscillator 

The following nonlinear autonomous ordinary 
differential equations comprise the Rucklidge system: 

2,, yz
td
zdx

td
ydzyybxa

td
xd

+−==−+−=         (5) 

For parameter values 7.6,2 == ba  and initial 

conditions ( ) =000 ,, zyx ( )5.4,0.0,0.1  we get a chaotic orbit. 
This can be observed through the phase-plane x-z in Fig. 8a. 
As expected, DLI plots present a random distribution (Fig. 8b). 

Changing b from 6.7 to 3.432 and keeping other parameters 
same, the system displays regular behavior (more precisely a 
limit cycle), as we can see in Fig. 8b. A pattern is clearly visible 
in DLI plots (Fig. 9b). In the end, the system evolves to a fixed 
point for .7.1,2 == ba  DLI, after a short transition period, 
tends to constant value .724.2≅DLI   

The evolution of log (FLI) with time is similar with 
that for Rossler oscillator. 

 114 



“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIV – 2011 – Issue 1 
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania 

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

x

z

Phase plot of Ruklidge oscillator (a=2,b=6.7)

-3 -2 -1 0 1 2 3
0

1

2

3

4

5

6

7

x

z

Phase plot of Ruklidge oscillator (a=2,b=3.432)

 
(a)                                                                         (b) 

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06
1.6

1.62

1.64

1.66

1.68

1.7

1.72

1.74

1.76

1.78

x

z

Phase plot of Ruklidge oscillator (a=2,b=1.7)

 
 (c) 

Figure 8: Phase-plane x-z for Rucklidge oscillator 
a) 7.6,2 == ba ; b) 432.3,2 == ba ; c) 7.1,2 == ba  
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Figure 9: DLI plots for Rucklidge oscillator 
a) 7.6,2 == ba  ; b) 432.3,2 == ba ; c) 7.1,2 == ba  
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3.4 Thomas cyclically symmetric oscillator 

As the last example we get the 3-D autonomous 
Thomas cyclically symmetric oscillator, whose behavior is 
described by the next set of differential equations: 

xzb
td
zdzyb

td
ydyxb

td
xd sin,sin,sin +−=+−=+−=

   

6) where b is a real constant. This system evolves 

chaotically for 18.0=b  (see Fig. 10 a, b) and regularly for 
31.0=b  (see Fig. 11 a, b). DLI plots confirm these evolutions. 
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Figure 10: Phase plot x –y and DLI plot for Thomas cyclically symmetric oscillator with 18.0=b  
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Figure 11: Phase plot x –y and DLI plot for Thomas cyclically symmetric oscillator with 31.0=b  

 
 
4. CONCLUSIONS 

The goal of this work was to apply the DLI method for 
distinguishing between ordered and chaotic orbits in the case 
of some continuous-time dynamical systems. We investigated 
the 2-D Ueda oscillator and the 3-D Rossler, Rucklidge and 
Thomas oscillators. The main conclusions of the study are: 
a) The DLI behaves randomly for chaotic orbits and 
regularly for ordered orbits. In this last case, there are an 
interesting relationship between the DLI plots and the period of 
motion; 
b) Generally, the FLI increases exponentially for chaotic 
orbits and decreases to zero or presents a linear variation for a 
regular orbits; 

c) The DLI gives very clear indication about orbits nature 
whenever applied; Though DLI has significant merits, it does 
not clearly identify regular and chaotic orbits in some cases; 
d) The computation of FLI and DLI is fast and easy; Only 
few hundreds of iterations are sufficient to get a conclusion; 
e) For numerical integrations we have used modern 
software, i.e. Matlab package, where the possibility of 
occurring of round off error be minimum; 
f) Before accepting DLI as an indicator of chaos, we think 
that other studies are necessary, especially for limit cases

 
 
 
 
 
 
 
 
 
 

 116 



“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XIV – 2011 – Issue 1 
Published by “Mircea cel Batran” Naval Academy Press, Constanta, Romania 

 
 
REFERENCES 
[1] Froeschle, C., Gonczi, R., Lega, E., The Fast Lyapunov Indicator: A simple tool to detect weak chaos, Application to the structure of 
the main a steroidal belt, Planet. Space Sci., Vol 45, pp 881-886, 1997. 
[2] Saha, L.M., Tehri, R., Application of recent indicators of regularity and chaos to discrete maps, Int. J. of Appl. Math. and Mech., Vol 
6(1), pp 86-93, 2010. 
[3] Deleanu D., New applications of Fast Lyapunov Indicator for discrete_time dynamical systems, Constanta Maritime University 
Annals, Vol 15, 2011 
[4] Saha, L.M., Budhraja, M., The largest eigenvalue: An indicator of chaos, Int. J. of Appl. Math. and Mech., Vol 3(1), pp 71-71, 2007. 
[5] Deleanu, D., Dynamic Lyapunov Indicator: a practical tool for distinguishing between ordered and chaotic orbits in discrete dynamical 
systems , Proceedings of the 10th WSEAS International Conference on Non-Linear Analysis, Non-Linear Systems and Chaos 
(NOLASC’11), Iasi, Romania, July 1-3, 2011, pp. 117-122. 
[6] Skokos, C.H., Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits, J. Phys. A: Math. 
Gen., Vol 34, pp 10029-10043, 2001. 
[7] Gottwald, G.A., Melbourne, I, A new test for chaos in deterministic systems, Proc. Roy. Soc. London, Vol 460 , pp 603-611, 2004. 
 
 
 

 

 117 


