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Abstract: The mixture model of two Exponential-Poisson distribution is investigated. First, some proprieties of the model are discussed. 
In order to estimate the vector of the unknown  parameters the EM algorithm is proposed. Further we carry out some simulated 
illustration using Monte Carlo method 
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1. INTRODUCTION 

Mixture models play a vital role in many practical 
applications. For example, direct applications of finite mixture 
models are in fisheries research, economics, medicine, 
psychology, palaeoanthropology, botany, agriculture, zoology, 
life testing and reliability, among others. Indirect applications 
include outliers, Gaussian sums, cluster analysis, latent 
structure models, modeling prior densities, empirical Bayes 
method and nonparametric (kernel) density estimation. 

In many applications, the available data can be 
considered as data coming from a mixture population of two or 

more distributions. This idea enables us to mix statistical 
distributions to get a new distribution carrying the properties of 
its components. 

Kuş (2007) [1] introduced and studied a new two - 
parameter distribution with decreasing failure rate, known as 
the Exponential–Poisson distribution. (EP). This distribution is 
obtained by mixing exponential and zero truncated Poisson 
distribution. 

The mixture of  two Exponential-Poisson distribution 
(MTEP) has its pdf as: 

1 1 2 2( , ) ( , ) ( , )f x p f x p f xq q q= + ,  2 11p p= -                               (1) 

where 1 1 2 1 2( , , , , )pq l l b b= ;   ( , )i i iq l b= ,  1,2i =  and  ( , )if x q  the density function of  i th component is given by [1] 
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The cdf of the MTEP is : 

1 1 1 2 2 2( , ) ( , ) ( , )F x p F x p F xq q q= +  

where ( , )i iF x q  is the cdf of the i th component and has the form [1] 
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It can be seen that, for all value of parameters, the MTEP density function is strictly deacrising x  and tending to 0 as x ® ¥  

  
(a) (b) 

Fig. 1: Density function: components and their mixture with parameters 
(a) (0.5, 0.5, 0.5, 1, 1.5), (b) (0.3, 3, 1, 3, 2) 
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2. PROPRIETIES 
1. Mean and variance 

The mean of the MTEP distribution is: 
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where ),,(, λdnF qp  is the. The definition of ),,(, λdnF qp  is: 
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where [ ]pnnn ,...,1= ,  p is the number of operands of n, [ ]qddd ,...,1=  and q the number of operands of d. Generalized 

hypergeometric function can be quickly evaluated and readily avaible in standard softwares, such as Maple, Mathematica. 
 Hence, the variance is given by: 
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2. The survival and hazard functions 
 Using (1) and (2), survival function (reability function) and hazard function (failure rate function) of MTEP are given, respectively, by 
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The MTEP hazard function is deacrising and both the initial and the long-term hazard are finite[1]. The MTEP hazard function for selected 
parameters values are displaid in Fig 2.  

  
(a) (b) 

Fig. 2: Hazard function: components and their mixture with parameters 
(a) (0.5, 0.5, 0.5, 1, 1.5), (b) (0.3, 3, 1, 3, 4) 
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3. PARAMETER ESTIMATION. EM ALGORITHM 
In this section, the EM algorithm is used to estimate the parameters of the pdf of the MTEP given in (1) and (2). The EM 

algorithm was intoduced by Dempster et al. (1977) [5] and provides a simple computational method for fitting mixture models.  
 

Let 1( ,..., )nx x x= be a sample of independent observations from a mixture of two EP distributions of dimension d, and let 

1( ,..., )nz z z=  be the latent variables that determine the component from which the observation originates. 

1 1/( 1) ~ ( , )i iX Z EP λ β=    and 2 2/( 2) ~ ( , )i iX Z EP λ β=  

where 1 1( 1)P Z p= =  and 1 2 1( 2) 1P Z p p= = = −  

Let ( )1 2 1 2 1 2, , , , ,p pθ λ λ β β=  the current estimate of mixture parameters. Then the likelihood function is 
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Given our current estimate of the parameters 
( )kθ , the conditional distribution of the Zi is determined by Bayes theorem: 
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And the expected log-likelihood is given by: 
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So we need to find: 
( )1 ( )arg min ( , )k kQ

θ
θ θ θ+ =  

In order to avoid solving a nonlinear system of equations, 
( )1kθ +

 is determined by an iterativ system of  equations. This is: 
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 Setting the first derivatives of 1L  and 2L  with respect to each parameter equal to zero results the following equations for each parameter 
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4. Verify the convergence of the algorithm 
( ) ( ) ( ) ( )( )1 1 ( 1) ( ) ( 1) ( ) ( 1) ( ) ( 1) ( )
1 1 2 2 1 1 2 2 1 1 2 2max , , , , ,k k k k k k k k k k k kp p p p l l l l b b b b e+ + + + + +- - - - - - <  

For a given e  and 1k +  number of iteration or 1k + <  total number of iteration. 

If one condition is met, then STOP, otherwise 1k k= + , 
( ) ( 1)k kp p += , 

( ) ( 1)
1 1

k kl l += , 
( ) ( 1)
2 2
k kl l += , 

( ) ( 1)
1 1

k kb b += , 
( ) ( 1)
2 2
k kb b +=  and go to step 2. 

 
4. SIMULATION OF MTEP 
  In this section, we calculate the estimates of the parameters that appear in the pdf of MTEP given in (1) and (2) by using the EM 
Algorithm in a Monte Carlo simulatin.  

Several simulation algorithms for EP distribution where introduced in [4]. One of this is the  EPExp algorithm (simulation of 
variable  ( , )EP λ β  by enveloping it with an Exponential density): 

repeat  
Generate U  uniform 0-1 

Generate  1U  uniform 0-1 

until  (1 )
1

UU e λ− −≤   

Take  ( )1 logX U
β

= −  

So, the random sample of  the mixture are generated as fallow [2]: 

1. Generate one uniform variate 1U   

2.  If 1 1U p<  then generate r.v x with  pdf. 1 1( , )f x q   

       If  1 1U p>  then generate r.v x with  pdf. 2 2( , )f x q  

Where 1 1( , )f x q  and 2 2( , )f x q  can be simulated with EPExp  algorithm. 

The algorithm was implemented in the Maple; each time a number N=10000 of sampling values was generated for each choise 

of the vector parameters ( )1 2 1 2 1 2, , , , ,p pθ λ λ β β= . The result show that the mean and the variance of the simulated values are 

close to the theoretical value of the mean, and of the variance as well. 
 

Table 1:The theoretical and the estimated mean and variance  of MTEP 
Caz 1:  

1 0.3p = , 2 0.7p = 1 1λ = , 1 2β = , 2 1.5λ = , 2 3β =  

Caz2:  

1 2 0.5p p= = , 1 3λ = , 1 1β = , 2 4λ = , 2 3β =  

EX =0,270434 
x =0.262992 

DX =0.113874 
2s =0.1202416 

EX =0.298748 
x =0.0,282759 

DX =0.157882 
2s =0.159947 
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Caz 1 Caz 2 

Fig. 3: Fit of the densities  to the histograms of the estimated values 
 

Also, simulation have been performed to investigate the convergence of the proposed EM algoritm. 10000 samples of size 100 
and 500 each are randomly sampled from the MTEP for each of three value of θ  are generated. The result  from the simulated data are 

reported in Table 2, which give the average ( )ˆav θ  calculated based on 10000 Monte Carlo repetition. The convergence of the EM 

algorithm is assumed when the absolute differences between succesive estimates are less than 
510− . 

 

Table 2  The means of the MTEM estimators for ( )1 2 1 2 1 2, , , , ,p pθ λ λ β β=  from 10000 samples of size 100 an 500 

generated from MTEP 
n ( )1 1 2 1 2, , , ,pθ λ λ β β=  ( )ˆav θ  

100 (0.3, 2, 4, 1, 3) 
(0.5, 2, 4, 1, 3) 
(0.8, 2, 4, 1, 3) 

(0.252, 1.842, 4.233, 0.930, 3.162) 
(0.483, 2.094, 4.109, 1.067, 3.098) 
(0.821, 2.103, 4.114, 1.131, 3.112) 

500 (0.3, 2, 4, 1, 3) 
(0.5, 2, 4, 1, 3) 
(0.8, 2, 4, 1, 3) 

(0.214, 2.042, 4.133, 1.090, 3.122) 
(0.509, 2.019, 3.903, 0.916, 3.045) 
(0.798, 2.032, 4.097, 0.930, 3.083) 

 
From table 2 we see that the mean of the MTEP estimators are closer to the theoretical value as n increase. 

 
5. CONCLUSION 
 In this paper, we discuss the properties of  the 
MTEP. Estimation of the unknown parameters of the mixture of  
two Exponential-Poisson distributions denoted by model (1) is 

obtained using EM-Algorithm. Some Monte Carlo simulations 
are carried out to investigate the performance of the estimation 
technique. Mixture models are a natural way to build 
a clustering model out of an existing probabilistic model. 
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